Monitoring and Control of a Continuous Grignard Reaction for the Synthesis of an Active Pharmaceutical Ingredient Intermediate Using Inline NIR spectroscopy

Albert Emili Cervera Padrell, Jesper Nielsen, Michael Jønch Pedersen, Kim Müller Christensen, Asmus R. Mortensen, Tommy Skovby, Kim Dam-Johansen, Søren Kiil, Krist V. Gernaey

Research output: Contribution to journalJournal articleResearchpeer-review

1633 Downloads (Pure)


Inline near-infrared (NIR) spectroscopy has been used to monitor a continuous synthesis of an active pharmaceutical ingredient (API) intermediate by a Grignard alkylation reaction. The reaction between a ketone substrate and allylmagnesium chloride may form significant impurities with excess feeding of the Grignard reagent beyond the stoichiometric ratio. On the other hand, limiting this reagent would imply a loss in yield. Therefore, accurate dosing of the two reactants is essential. A feedforward–feedback control loop was conceived in order to maintain the reaction as closely as possible to the stoichiometric ratio, leading the path to full process automation. The feedback control loop relies on NIR transmission measurements performed in a flow cell where, in contrast to labor-intensive offline HPLC analytical methods, the whole reaction product can be scanned in real time without sample dilution. A robust PLS (projection to latent structures) model was developed with a satisfactory standard error of prediction, providing quantification of the ketone substrate in solutions with a high variability of the major solution component - the alkoxide product. In addition, model performance supervision tools such as the spectral residuals or simple plots of pretreated spectra can assist in the identification of spectral outliers, which in this case could be related to Grignard reagent excess. If the sampling time of the NIR instrument is short enough, manipulating the inputs to the reactor may be used to obtain information about its dynamic behavior. This information is very useful for process control design, assessment of analytical tools and definition of sampling times. In this work, a systematic procedure for chemometric model building is followed, after which a discussion is made on some of the potential applications that can be found when exploiting the fast and rich information provided by NIR spectroscopy.
Original languageEnglish
JournalOrganic Process Research and Development
Issue number5
Pages (from-to)901-914
Publication statusPublished - 2012

Bibliographical note

Special Issue: Continuous Processes 2012

© 2012 American Chemical Society


Dive into the research topics of 'Monitoring and Control of a Continuous Grignard Reaction for the Synthesis of an Active Pharmaceutical Ingredient Intermediate Using Inline NIR spectroscopy'. Together they form a unique fingerprint.

Cite this