Molecularly imprinted polymers for sample preparation and biosensing in food analysis: Progress and perspectives

Molecularly imprinted polymers (MIPs) are biomimetics which can selectively bind to analytes of interest. One of the most interesting areas where MIPs have shown the biggest potential is food analysis. MIPs have found use as sorbents in sample preparation attributed to the high selectivity and high loading capacity. MIPs have been intensively employed in classical solid-phase extraction and solid-phase microextraction. More recently, MIPs have been combined with magnetic bead extraction, which greatly simplifies sample handling procedures. Studies have consistently shown that MIPs can effectively minimize complex food matrix effects, and improve recoveries and detection limits. In addition to sample preparation, MIPs have also been viewed as promising alternatives to bio-receptors due to the inherent molecular recognition abilities and the high stability in harsh chemical and physical conditions. MIPs have been utilized as receptors in biosensing platforms such as electrochemical, optical and mass biosensors to detect various analytes in food. In this review, we will discuss the current state-of-the-art of MIP synthesis and applications in the context of food analysis. We will highlight the imprinting methods which are applicable for imprinting food templates, summarize the recent progress in using MIPs for preparing and analysing food samples, and discuss the current limitations in the commercialisation of MIPs technology. Finally, future perspectives will be given.

General information
Publication status: Published
Organisations: Department of Micro- and Nanotechnology, BioLabChip, National Food Institute, Research Group for Analytical and Predictive Microbiology
Contributors: Ashley, J., Shahbazi, M., Kant, K., Aaydha Chidambaram, V., Wolff, A., Bang, D. D., Sun, Y.
Number of pages: 10
Pages: 606-615
Publication date: 2017
Peer-reviewed: Yes

Publication information
Journal: Biosensors and Bioelectronics
Volume: 91
ISSN (Print): 0956-5663
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 7.83 SJR 2.373 SNIP 1.656
Web of Science (2017): Impact factor 8.173
Web of Science (2017): Indexed yes
Original language: English
Keywords: Biosensors, Food analysis, Molecularly imprinted polymers, Sample preparation
Electronic versions:
Review_Paper_MIPs_postprint.pdf. Embargo ended: 16/01/2019
DOIs: 10.1016/j.bios.2017.01.018
Source: FindIt
Source ID: 2350997391
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review