Molecular ordering of ethanol at the calcite surface

I. S. Pasarín, M. Yang, Nicolas Emile Bovet, Magni Glyvradal, Martin Meedom Nielsen, Jakob Bohr, R. Feidenhans'l, Susan Louise Svane Stipp

Research output: Contribution to journalJournal articleResearchpeer-review


To produce biominerals, such as shells, bones, and teeth, living beings create organic compounds that control the growth of the solid phase. Investigating the atomic scale behavior of individual functional groups at the mineral-fluid interface provides fundamental information that is useful for constructing accurate predictive models for natural systems. Previous investigations of the activity of coccolith-associated polysaccharides (CAP) on calcite, using atomic force microscopy (AFM) [ Henriksen, K., Young, J. R., Bown, P. R., and Stipp, S. L. S.Palentology 2004, 43 (Part 3), 725-743 ] and molecular dynamics (MD) modeling [ Yang, M., Stipp, S. L. S., and Harding, J. H.Cryst. Growth Des. 2008, 8 (11), 4066-4074 ], have suggested that OH functional groups control polysaccharide attachment. The purpose of this work was to characterize, using X-ray reflectivity (XR) combined with molecular dynamics (MD) simulations, the structuring on calcite of a layer of the simplest carbon chain molecule that contains an OH group, ethanol (CH 3-CH2-OH). We found evidence that EtOH forms a highly ordered structure at the calcite surface, where the first layer molecules bond with calcite. The ethanol molecules stand up perpendicularly at the interface or nearly so. As a consequence, the fatty, CH3 ends form a new surface, about 6 Å from the termination of the bulk calcite, and beyond that, there is a thin gap where ethanol density is low. Following is a more disordered layer that is two to three ethanol molecules thick, about 14 Å, where density more resembles that of bulk liquid ethanol. The good agreement between theory and experiment gives confidence that a theoretical approach can offer information about behavior in more complex systems. © 2012 American Chemical Society.
Original languageEnglish
Issue number5
Pages (from-to)2545-2550
Publication statusPublished - 2012


  • Atomic force microscopy
  • Carbonate minerals
  • Ethanol
  • Functional groups
  • Molecular dynamics
  • Molecules
  • Calcite

Fingerprint Dive into the research topics of 'Molecular ordering of ethanol at the calcite surface'. Together they form a unique fingerprint.

Cite this