TY - JOUR
T1 - Molecular dynamics simulations of the penetration lengths: application within the fluctuation theory for diffusion coefficients
AU - Galliero, Guillaume
AU - Medvedev, Oleg
AU - Shapiro, Alexander
PY - 2005
Y1 - 2005
N2 - Mutual diffusion in condensed phases is a theoretically and practically important subject of active research. One of the most rigorous and theoretically advanced approaches to the problem is a recently developed approach based on the concept of penetration lengths (Physica A 320 (2003) 211; Physica A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different binary liquid mixtures of non-polar components that computed penetration lengths, for various temperatures and compositions, are consistent with those deduced from experiments in the framework of the formalism of the fluctuation theory. Moreover, the mutual diffusion coefficients obtained from a coupled fluctuation theory and molecular dynamics scheme exhibit consistent trends and average deviations from experimental data around 10-20%. (c) 2004 Elsevier B.V. All rights reserved.
AB - Mutual diffusion in condensed phases is a theoretically and practically important subject of active research. One of the most rigorous and theoretically advanced approaches to the problem is a recently developed approach based on the concept of penetration lengths (Physica A 320 (2003) 211; Physica A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different binary liquid mixtures of non-polar components that computed penetration lengths, for various temperatures and compositions, are consistent with those deduced from experiments in the framework of the formalism of the fluctuation theory. Moreover, the mutual diffusion coefficients obtained from a coupled fluctuation theory and molecular dynamics scheme exhibit consistent trends and average deviations from experimental data around 10-20%. (c) 2004 Elsevier B.V. All rights reserved.
U2 - 10.1016/j.physa.2004.11.011
DO - 10.1016/j.physa.2004.11.011
M3 - Journal article
SN - 0378-4371
VL - 350
SP - 315
EP - 337
JO - Physica A: Statistical Mechanics and its Applications
JF - Physica A: Statistical Mechanics and its Applications
IS - 2-4
ER -