Abstract
Heat transfer in particular can be optimized by designing the macro-structure of the fluid-solid interface, which includes mounting pin-fins or acid etching of the surface. However, the mechanism behind heat transfer at the nanoscale is different from that at macroscale as the size of the surface structure reaches the phonon mean free path. While recent studies have considered the ballistic phonon transport in many nanoscale metallic materials, the relation between ballistic configuration and solid-liquid heat transfer is still limited. To this end, we investigate the effect of the nano hole on solid-liquid heat transfer using molecular dynamics simulations in the presence of nanoscale surface structures - here represented by nanoholes in the surface. As a result,the larger hole can enable a better capacity to water molecules for absorbing the energy from copper substrate. Therefore, the presence of the nanoholes results in a smaller temperature dfference at the interface which enhances the solid-liquid heat transfer. Our results could provide the basis for further research on the thermal transport of bubble nucleation on nanostructures and could shed light on some principles behind the coupling of ballistic configuration and bubble nucleation.
Original language | English |
---|---|
Publication date | 2019 |
Number of pages | 5 |
Publication status | Published - 2019 |
Event | 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2019) - Wicklow, Ireland Duration: 22 Jul 2019 → 24 Jul 2019 |
Conference
Conference | 14th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT 2019) |
---|---|
Country | Ireland |
City | Wicklow |
Period | 22/07/2019 → 24/07/2019 |