Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach

Benjamin Fiedler, Sonia Coriani, Joachim Friedrich

Research output: Contribution to journalJournal articleResearchpeer-review


We present the first implementation of the fully automated incremental scheme for CCSD unrelaxed dipole moments using the domain-specific basis-set approach. Truncation parameters are varied, and the accuracy of the method is statistically analyzed for a test set of 20 molecules. The local approximations introduce small errors at second order and negligible ones at third order. For a third-order incremental CCSD expansion with a CC2 error correction, a cc-pVDZ/SV domain-specific basis set (tmain = 3.5 Bohr), and the truncation parameter f = 30 Bohr, we obtain a mean error of 0.00 mau (-0.20 mau) and a standard deviation of 1.95 mau (2.17 mau) for the total dipole moments (Cartesian components of the dipole vectors). By analyzing incremental CCSD energies, we demonstrate that the MP2 and CC2 error correction schemes are an exclusive correction for the domain-specific basis-set error. Our implementation of the incremental scheme provides fully automated computations of highly accurate dipole moments at reduced computational cost and is fully parallelized in terms of the calculation of the increments. Therefore, one can utilize the incremental scheme, on the same hardware, to extend the basis set in comparison to standard CCSD and thus obtain a better total accuracy.
Original languageEnglish
JournalJournal of Chemical Theory and Computation
Issue number7
Pages (from-to)3040-3052
Number of pages13
Publication statusPublished - 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'Molecular Dipole Moments within the Incremental Scheme Using the Domain-Specific Basis-Set Approach'. Together they form a unique fingerprint.

Cite this