Abstract
The molecular and vibrational structure of the title compound (C4-HSL) was studied by experimental and theoretical methods. The infrared (IR) absorption spectrum was measured in the solid state and in CCl4 suspension. The observed absorption bands were compared with transitions obtained with B3LYP/cc-pVTZ density functional theory (DFT) calculations. Two stable molecular conformations were predicted, corresponding to an endo- and an exo-conformer with similar energies. Intermolecular amide-amide hydrogen bonding in the crystal state was approximated by a simple cluster model, leading to excellent agreement with the observed solid state IR spectrum. Due to the low solubility of C4-HSL in common solvents for IR spectroscopy, such as CS2 and CCl4, a liquid solution spectrum of pure, monomeric C4-HSL was not obtained. However, absorbance peaks observed in oversaturated CCl4 solution could be assigned to distinct contributions from suspended micro-crystalline aggregates and dissolved monomeric species. The key vibrational bands of the monomeric form of C4-HSL are reported here for the first time: 3425cm−1 (ν(N-H)), 1784cm−1 (ν(C&dbnd;O), lactone), 1688cm−1 (amide I), and 1494cm−1 (amide II) (CCl4).
Original language | English |
---|---|
Journal | Vibrational Spectroscopy |
Volume | 49 |
Issue number | 2 |
Pages (from-to) | 237-241 |
ISSN | 0924-2031 |
DOIs | |
Publication status | Published - 2009 |
Keywords
- N-Acyl-homoserine lactones (AHL)
- Infrared spectroscopy
- Molecular conformation
- Intermolecular hydrogen bonding
- Density functional theory (DFT)