Modular Pathway Rewiring of Yeast for Amino Acid Production

Quanli Liu, Tao Yu, Kate Campbell, Jens Nielsen, Yun Chen

Research output: Chapter in Book/Report/Conference proceedingBook chapterResearchpeer-review


Amino acids find various applications in biotechnology in view of their importance in the food, feed, pharmaceutical, and personal care industries as nutrients, additives, and drugs, respectively. For the large-scale production of amino acids, microbial cell factories are widely used and the development of amino acid-producing strains has mainly focused on prokaryotes Corynebacterium glutamicum and Escherichia coli. However, the eukaryote Saccharomyces cerevisiae is becoming an even more appealing microbial host for production of amino acids and derivatives because of its superior molecular and physiological features, such as amenable to genetic engineering and high tolerance to harsh conditions. To transform S. cerevisiae into an industrial amino acid production platform, the highly coordinated and multiple layers regulation in its amino acid metabolism should be relieved and reconstituted to optimize the metabolic flux toward synthesis of target products. This chapter describes principles, strategies, and applications of modular pathway rewiring in yeast using the engineering of L-ornithine metabolism as a paradigm. Additionally, detailed protocols for in vitro module construction and CRISPR/Cas-mediated pathway assembly are provided.
Original languageEnglish
Title of host publicationMethods in Enzymology
Publication date2018
Publication statusPublished - 2018
SeriesMethods in Enzymology


  • Amino acids
  • L-Ornithine
  • Metabolic flux
  • Modular pathway engineering
  • Saccharomyces cerevisiae


Dive into the research topics of 'Modular Pathway Rewiring of Yeast for Amino Acid Production'. Together they form a unique fingerprint.

Cite this