Abstract
Auditory brainstem responses (ABR) are used for both clinical and research purposes to objectively
assess human hearing. A prominent feature of the transient evoked ABR is the level-dependent latency
of the distinct peaks in its waveform. The latency of the most prominent peak, wave-V, is about 8 ms
at a peak equivalent sound pressure level of 55 dB, and reduces for increasing level by approximately
1 ms / 20 dB. A classical explanation for this finding asserts that an increasing stimulus levels lead
to a broadened excitation pattern on the basilar membrane. This results in further activation of the
basal regions of the cochlea. Given the physical properties of the basilar membrane, increased basal
activation is believed to cause a decreasing ABR latency. An Auditory Nerve (AN) model and the
Dual Resonance Non-Linearity (DRNL) filter model are considered as separate front-end cochlear
models to simulate ABRs. Even though both models incorporate level-dependent tuning and synapse
adaptation, and thus theoretically should be capable of simulating level-dependent latencies, both
models under-predict the latencies. The failure to produce accurate simulations suggests, that the
level-depending tuning in the models is not accurately modelled. The level dependency of the basilar
membrane filter tuning in humans is not well described in the literature and could therefore cause
the modelling difficulties.
Original language | English |
---|---|
Title of host publication | Proceedings of Forum Acusticum 2011 |
Publication date | 2011 |
ISBN (Print) | 978-84-694-1520-7 |
Publication status | Published - 2011 |
Event | Forum Acusticum 2011 - Aalborg, Denmark Duration: 26 Jun 2011 → 1 Jul 2011 http://www.fa2011.org/ |
Conference
Conference | Forum Acusticum 2011 |
---|---|
Country/Territory | Denmark |
City | Aalborg |
Period | 26/06/2011 → 01/07/2011 |
Internet address |