Modelling the deformation of nickel foil during manufacturing of nanostructures on injection moulding tool inserts - DTU Orbit (28/09/2019)

Modelling the deformation of nickel foil during manufacturing of nanostructures on injection moulding tool inserts

In the present work, a manufacturing process for transferring nanostructures from a glass wafer to a double-curved insert for injection moulding is demonstrated. A nanostructure consisting of sinusoidal cross-gratings with a period of 426 nm is successfully transferred to hemispheres on an aluminium substrate with three different radii; 500 μm, 1000 μm and 2000 μm, respectively. The nanoimprint is performed using a 50 μm thick nickel foil, manufactured using electroforming. During the imprinting process, the nickel foil is stretched due to the curved surface of the aluminium substrate. Experimentally, it is possible to address this stretch by counting the periods of the cross-gratings via SEM characterization. A model for the deformation of the nickel foil during nanoimprint is developed, utilizing non-linear material and geometrical behaviour. Good agreement between measured and numerically calculated stretch ratios on the surface of the deformed nickel foil is found, and it is shown, that from the model it is also possible to predict the geometrical extent of the nanostructured area on the curved surfaces.

General information
Publication status: Published
Organisations: Department of Mechanical Engineering, Manufacturing Engineering, Polymer Micro & Nano Engineering, Department of Micro- and Nanotechnology, InMold Biosystems A/S, Dansk Fundamental Metrology A/S, Nanyang Technological University
Number of pages: 6
Publication date: 2016
Peer-reviewed: Yes

Publication information
Journal: A I P Conference Proceedings Series
Volume: 1769
Article number: 090003
ISSN (Print): 0094-243X
Ratings:
BFI (2016): BFI-level 1
Scopus rating (2016): CiteScore 0.21 SJR 0.165 SNIP 0.246
Original language: English
Electronic versions:
AIP_paper.pdf. Embargo ended: 01/11/2017
DOIs:
10.1063/1.4963493
Research output: Contribution to journal › Conference article – Annual report year: 2016 › Research › peer-review