Modeling Study of High Pressure and High Temperature Reservoir Fluids

With dwindling easily accessible oil and gas resources, more and more exploration and production activities in the oil industry are driven to technically challenging environments such as unconventional resources and deeper formations. The temperature and pressure can become extremely high, e.g., up to 250 °C and 2400 bar, in the deep petroleum reservoirs. Furthermore, many of these deep reservoirs are found offshore, including the North Sea and the Gulf of Mexico, making the development even more risky. On the other hand, development of these high pressure high temperature (HPHT) fields can be highly rewarding if successfully produced. This PhD project is part of the NextOil (New Extreme Oil and Gas in the Danish North Sea) project which is intended to reduce the uncertainties in HPHT field development. The main focus of this PhD is on an accurate description of the reservoir fluid behavior under HPHT conditions to minimize the production risks from these types of reservoirs. In particular, the study has thoroughly evaluated several non-cubic Equations of State (EoSs) which are considered promising for HPHT fluid modeling, showing their advantages and short comings based on an extensive comparison with experimental data. In the course of the evaluation, we have developed new petroleum fluid characterization procedures, built large databases for well-defined mixtures and reservoir fluids, and improved the evaluation software and made it more suitable for efficient and large scale comparison. We have made a comprehensive comparison between cubic and non-cubic EoSs to evaluate whether advanced EoS in non-cubic forms, including both the SAFT-type EoS with strong theoretical basis (e.g. the PC-SAFT EoS) and the empirical BWR-type EoS (e.g. the Soave-BWR EoS), can be advantageous for describing the physical properties and phase equilibrium of reservoir fluids over a wide temperature and pressure range. In addition, we have also compared these models in calculation of heat capacities and Joule-Thomson coefficients for pure components and multicomponent mixtures. Joule-Thomson coefficients are of special interest to the oil industry because of the so called reverse Joule-Thomson effect commonly observed in HPHT fields, where a decrease in pressure results in an increase in temperature, which is just the opposite to the effect at low pressure. In the comparative studies between cubic and non-cubic models, we also included GERG-2008 which is a wide-range EoS developed for 21 components of natural gases and their binary mixtures and is regarded as the most accurate EoS model for natural gas mixtures. It was found that the non-cubic models are much better than the cubics in density, compressibility, heat capacity and Joule-Thomson coefficient calculation of the well defined light and heavy components in reservoir fluids over a wide temperature and pressure range, GERG-2008 being the best with the lowest deviation among all EoS models. GERG-2008 however gives very large deviations for bubble point pressure calculation of some heavy and asymmetric binary systems such as n-butane + n-nonane system. This suggests that this EoS and its binary interaction parameters could still be improved for some of the binary pairs. Soave-BWR gives the closest prediction of the thermal properties to that of GERG-2008 among other EoSs tested in this study. The binary VLE calculation showed that PC-SAFT and Soave-BWR are similar to SRK and PR in correlating the important binary pairs in reservoir fluids. Although Soave-BWR and PC-SAFT give smaller average kij values than SRK and PR, they are more sensitive to the change in kij. Phase envelope prediction of synthetic gases showed that all the EoS models were similar for not too asymmetric synthetic gases, with or without the optimal kij values for SRK, PR, PC-SAFT and Soave-BWR. For highly asymmetric synthetic mixtures, Soave-BWR and GERG-2008 tend to predict phase envelopes different from other models where as none of the tested models give satisfactory predictions. For heat capacity and Joule-Thomson coefficients, GERG-2008 and Soave-BWR give the closest predictions. All the evaluated EoS models tend to predict a nearly constant Joule-Thomson coefficient at high pressures. For typical reservoir temperatures, the constant is around -0.5 K/MPa. For non-cubic models like PC-SAFT the characterization method is less mature than the cubic models. A reservoir fluid characterization method for PC-SAFT has been proposed by combining Pedersen’s method with a newly developed set of correlations for the PC-SAFT model parameters m, m/k and m3. In addition, we further improved the characterization method for PC-SAFT by adjusting the correlations with a large PVT database. We have further improved the correlations and proposed a new characterization approach for the PC-SAFT model for performing a generic characterization for reservoir fluids. The approach consists in developing correlations of model parameters first with a database for well-defined components and then adjusting the correlations with a large PVT database. The adjustment is made to minimize the deviation in key PVT properties like saturation pressures, densities at reservoir temperature and Stock Tank Oil (STO) densities, while keeping the n-alkane limit of the correlations unchanged. Apart from applying this general approach to PC-SAFT, we have also shown that the approach can be applied to classical cubic models like SRK and PR. In addition, we discussed how to develop a PNA based characterization for PC-SAFT and also utilize a large PVT database to further improve the characterization. With the developed characterization methods, we have made a comparison in PVT calculation involving 17EoS-characterization combinations and 260 reservoir fluids. PC-SAFT with the new general characterization method is shown to give the lowest AAD% and maximum deviation in calculation of saturation pressure, density and STO density, among all the tested characterization methods for PC-SAFT. Application of the new characterization method to SRK and PR improved the saturation pressure calculation in comparison to the original characterization method for SRK and PR. Using volume translation together with the new characterization approach for SRK and PR gives comparable results for density and STO density to that of original characterization for SRK and PR with volume translation. For the PVT database used in this study, cubic EoSs seem to have better performance than PC-SAFT in calculation of saturation pressure; PC-SAFT and cubics with volume translation show comparable results in calculation of density and STO density. As a preliminary attempt to integrate more analytical information in characterization, we discussed how to modify the existing algorithms to utilize data from both simulated distillation and true boiling point distillation, and in particular, the component distribution information from the simulated distillation. Some analyses have been made on the impact of including more detailed analytical information. Finally, to improve Soave-BWR for mixture calculation, we have tried to develop several new sets of mixing rules for this EoS. The new mixing rules were developed based on some theoretical considerations as well as the previous mixing rules for non-cubic EoS models. In addition, it was tried to create some hybrid mixing rules by...
combining a new set of mixing rules and the original mixing rules for Soave-BWR. It was shown that some problems with
the original Soave-BWR mixing rules can be fixed by the new mixing rules although the overall performance is not
significantly improved. Development of mixing rules for non-cubic EoS models is still a semi-empirical process, requiring
extensive testing to evaluating their performance. We have developed the code in a structured manner so that the new
mixing rules can be quickly tested. It can facilitate further extensive screening of new mixing rules for Soave-BWR or even
other non-cubic EoS models.

General information
Publication status: Published
Organisations: Department of Chemistry
Contributors: Varzandeh, F.
Number of pages: 305
Publication date: 2017

Publication information
Place of publication: Kgl. Lyngby
Publisher: DTU Chemistry
Original language: English
Electronic versions:
PhD_Thesis_Farhad_Varzandeh_Online.pdf