Modeling of the pressure propagation due to CO2 injection and the effect of fault permeability in a case study of the Vedsted structure, Northern Denmark

Ernest Ncha Mbia, Peter Frykman, Carsten M. Nielsen, Ida Lykke Fabricius, Gillian E. Pickup, Ann T. Sørensen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Assessing the pressure buildup in CO2 storage sites and especially the vertical propagation is vital for evaluation of site behavior and security. Vedsted structure in the Northern part of Jylland in Denmark consists of 290m thick Gassum Formation at 2100m depth forming the primary reservoir and is sealed by the 530m thick Fjerritslev Formation which is mainly shale lithology with very low permeability. Overlying the caprock is a number of formations forming secondary reservoirs and seals including a 420m thick Chalk Group which is overlain by 20–50m Quaternary deposits. Seismic profiling of the structure shows the presence of northwest-southeast trending faults of which some originate in the upper layer of the Gassum reservoir and some reach the base Chalk Group layer. Two faults in the upper Gassum reservoir have been interpreted to be connected to the base Chalk Group. In order to evaluate potential risks associated with vertical pressure transmission via the faults through the caprock, a number of simulation cases have been run with various fault permeabilities spanning orders of magnitude to represent both the worst and best case scenarios. Fault rock permeability data were obtained from a literature study and range from 1000mD (maximum value reported from sedimentary rock environment) for the worst case scenario down to 0.001mD (sealing faults in sedimentary rock environment) for the best case scenario. The results show that after injecting 60 million tons (Mt) of CO2 at a rate of 1.5Mt/year for 40 years, overpressure is developed in the reservoir and about 5bar is transmitted to the base Chalk Group for the 1000mD fault permeability (open fault) case, while for the 0.001mD (sealing fault) case the pressure buildup is confined within the primary caprock. The results also show that, approximately 0.3–5.0bar overpressure can be transmitted to the base Chalk Group when the fault permeability is above 1.0mD.
Original languageEnglish
JournalInternational Journal of Greenhouse Gas Control
Volume28
Pages (from-to)1-10
Number of pages10
ISSN1750-5836
DOIs
Publication statusPublished - 2014

Keywords

  • Geological sequestration
  • Fault permeability
  • CO2 leakage
  • Pressure buildup
  • Numerical simulation

Fingerprint Dive into the research topics of 'Modeling of the pressure propagation due to CO<sub>2</sub> injection and the effect of fault permeability in a case study of the Vedsted structure, Northern Denmark'. Together they form a unique fingerprint.

Cite this