Modeling inelastic phonon scattering in atomic- and molecular-wire junctions

Magnus Paulsson, Thomas Frederiksen, Mads Brandbyge

    Research output: Contribution to journalJournal articleResearchpeer-review

    424 Downloads (Pure)


    Computationally inexpensive approximations describing electron-phonon scattering in molecular-scale conductors are derived from the nonequilibrium Green's function method. The accuracy is demonstrated with a first-principles calculation on an atomic gold wire. Quantitative agreement between the full nonequilibrium Green's function calculation and the newly derived expressions is obtained while simplifying the computational burden by several orders of magnitude. In addition, analytical models provide intuitive understanding of the conductance including nonequilibrium heating and provide a convenient way of parameterizing the physics. This is exemplified by fitting the expressions to the experimentally observed conductances through both an atomic gold wire and a hydrogen molecule.
    Original languageEnglish
    JournalPhysical Review B Condensed Matter
    Issue number20
    Pages (from-to)201101
    Publication statusPublished - 2005

    Bibliographical note

    Copyright 2005 American Physical Society


    Dive into the research topics of 'Modeling inelastic phonon scattering in atomic- and molecular-wire junctions'. Together they form a unique fingerprint.

    Cite this