Modeling and Design of High-Efficiency Single-Photon Sources

Niels Gregersen, Per Kær Nielsen, Jesper Mørk

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Solid-state sources capable of emitting single photons on demand are of great interest in quantum information applications. Ideally, such a source should emit exactly one photon into the collection optics per trigger, the emitted photons should be indistinguishable, and the source should be electrically driven. Several design strategies addressing these requirements have been proposed. In the cavity-based source, light emission is controlled using resonant cavity quantum electrodynamics effects, whereas in the waveguide-based source, broadband electric field screening effects are employed to direct the light emission into the optical mode of interest. For all the strategies, accurate modeling and careful optical engineering is required to achieve high performance. In this study, we discuss the models and numerical techniques used to analyze such structures. The physical effects governing the light emission profile and the possibilities of tailoring it as well as the mechanisms governing the coherence are elucidated. The major design strategies pursued to optimize the single-photon source performance and the remaining challenges are reviewed.
    Original languageEnglish
    JournalI E E E Journal on Selected Topics in Quantum Electronics
    Volume19
    Issue number5
    Pages (from-to)9000516
    Number of pages16
    ISSN1077-260X
    DOIs
    Publication statusPublished - 2013

    Keywords

    • Light-emitting diode
    • Microcavity
    • Photonic nanowire
    • Single-photon source (SPS)

    Fingerprint

    Dive into the research topics of 'Modeling and Design of High-Efficiency Single-Photon Sources'. Together they form a unique fingerprint.

    Cite this