Modeling a material from packing, through sintering and to the final microstructural properties - DTU Orbit (02/11/2019)

Modeling a material from packing, through sintering and to the final microstructural properties

We present a combination of numerical models that can together simulate the initial packing of particles, followed by sintering and finally the resulting microstructural properties. For the latter we here focus on the magnetism of a sintered sample, and the associated coupling between heat and magnetism known as the magnetocaloric effect. We present a 3-dimensional time-dependent numerical model that spatially resolves samples down to the grain size, and includes the demagnetizing field, chemical inhomogeneity realized as a spatial variation of Curie temperature across the sample, local hysteresis and heat transfer. We can thus model how particle size, packing, sintering and chemical inhomogeneity affect the observed properties of magnetocaloric samples. For example, we show that even a modest distribution in Curie temperature (TC) across the sample results in a significant broadening and lowering of the total entropy change of the sample around TC. We discuss how clustering of grains with similar values of TC across the sample influences the results.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials
Contributors: Bjørk, R., Nielsen, K. K.
Number of pages: 1
Publication date: 2017
Peer-reviewed: Yes
Event: Abstract from International Conference on Sintering 2017, San Diego, California, United States.
Electronic versions:
Sintering_2017_rabj_abstract.pdf
Source: PublicationPreSubmission
Source ID: 139933181
Research output: Contribution to conference › Conference abstract for conference – Annual report year: 2017 › Research › peer-review