Model based active power control of a wind turbine

In recent decades there has been increasing interest in green energies, of which wind energy is one of the most important. Wind turbines are the most common wind energy conversion systems and are hoped to be able to compete with traditional power plants in near future. This demands better technology to increase competitiveness of the wind power plants. One way to increase competitiveness of wind power plants is to offer grid services (also called ancillary services) that are normally offered by traditional power plants. One of the ancillary services is called reserve power. There are instants in the electricity market that selling the reserve power is more profitable than producing with the full capacity. Therefore wind turbines can be down-regulated and sell the differential capacity as the reserve power. In this paper we suggest a model based approach to control wind turbines for active power reference tracking. We use model predictive control (MPC) as our control method. We compare three different control strategies, namely Max-Ω, Constant-Ω and Constant-λ and discuss their drawbacks and benefits by presenting analysis of the steady state operating points and simulations on a high fidelity wind turbine model.

General information
Publication status: Published
Organisations: Department of Applied Mathematics and Computer Science, Department of Wind Energy, Aeroelastic Design, Dynamical Systems, Department of Electrical Engineering, Automation and Control, Aalborg University
Contributors: Mirzaei, M., Soltani, M., Poulsen, N. K., Niemann, H. H.
Pages: 5037-5042
Publication date: 2014

Host publication information
Title of host publication: Proceedings of the American Control Conference
Publisher: IEEE
ISBN (Print): 978-1-4799-3272-6
Keywords: machine control, power control, wind power, wind power plants, wind turbines, Components, Circuits, Devices and Systems, active power reference tracking, ancillary services, Blades, differential capacity, electricity market, Generators, green energies, grid services, high fidelity wind turbine model, model based active power control, model predictive control, MPC, Power systems, Predictive control for linear systems, reserve power, steady state operating points, Steady-state, Torque, Velocity control, wind energy conversion systems, Wind speed, wind turbine control, Wind turbines
DOIs:
10.1109/ACC.2014.6859055
Source: FindIt
Source-ID: 269453968
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2014 › Research › peer-review