Minimal Webs in Riemannian Manifolds

    Research output: Contribution to journalJournal articleResearchpeer-review

    387 Downloads (Pure)


    For a given combinatorial graph $G$ a {\it geometrization} $(G, g)$ of the graph is obtained by considering each edge of the graph as a $1-$dimensional manifold with an associated metric $g$. In this paper we are concerned with {\it minimal isometric immersions} of geometrized graphs $(G, g)$ into Riemannian manifolds $(N^{n}, h)$. Such immersions we call {\em{minimal webs}}. They admit a natural 'geometric' extension of the intrinsic combinatorial discrete Laplacian. The geometric Laplacian on minimal webs enjoys standard properties such as the maximum principle and the divergence theorems, which are of instrumental importance for the applications. We apply these properties to show that minimal webs in ambient Riemannian spaces share several analytic and geometric properties with their smooth (minimal submanifold) counterparts in such spaces. In particular we use appropriate versions of the divergence theorems together with the comparison techniques for distance functions in Riemannian geometry and obtain bounds for the first Dirichlet eigenvalues, the exit times and the capacities as well as isoperimetric type inequalities for so-called extrinsic $R-$webs of minimal webs in ambient Riemannian manifolds with bounded curvature.
    Original languageEnglish
    JournalGeometriae Dedicata
    Issue number1
    Pages (from-to)7-34
    Publication statusPublished - 2008


    • extrinsic minimal $R-$webs
    • comparison theory
    • locally finite countable graphs
    • isoperimetric inequalities
    • Minimal immersions
    • transience
    • capacity
    • eigenvalues
    • Laplacian


    Dive into the research topics of 'Minimal Webs in Riemannian Manifolds'. Together they form a unique fingerprint.

    Cite this