Mimicking and analyzing the tumor microenvironment

Roxane Crouigneau, Yanfang Li, Jamie Auxillos, Eliana Goncalves-Alves, Rodolphe Marie*, Albin Sandelin*, Stine Falsig Pedersen*

*Corresponding author for this work

Research output: Contribution to journalReviewpeer-review

2 Downloads (Pure)

Abstract

The tumor microenvironment (TME) is increasingly appreciated to play a decisive role in cancer development and response to therapy in all solid tumors. Hypoxia, acidosis, high interstitial pressure, nutrient-poor conditions, and high cellular heterogeneity of the TME arise from interactions between cancer cells and their environment. These properties, in turn, play key roles in the aggressiveness and therapy resistance of the disease, through complex reciprocal interactions between the cancer cell genotype and phenotype, and the physicochemical and cellular environment. Understanding this complexity requires the combination of sophisticated cancer models and high-resolution analysis tools. Models must allow both control and analysis of cellular and acellular TME properties, and analyses must be able to capture the complexity at high depth and spatial resolution. Here, we review the advantages and limitations of key models and methods in order to guide further TME research and outline future challenges.

Original languageEnglish
Article number100866
JournalCell Reports Methods
Volume4
Issue number10
Number of pages17
ISSN2667-2375
DOIs
Publication statusPublished - 2024

Keywords

  • Cancer
  • Tumor microenvironment
  • Metabolism
  • Organoids
  • Tumor models
  • Microfluidics
  • Heterogeneity

Fingerprint

Dive into the research topics of 'Mimicking and analyzing the tumor microenvironment'. Together they form a unique fingerprint.

Cite this