Projects per year
Abstract
Due to current limitations in control of pharmaceutical drug release in the
body along with increasing medicine use, methods of externally-controlled
drug release are of high interest. In this thesis, the use of microwaves is
proposed as a technique with the purpose of externally activating pharmaceutical
drug capsules, in order to release drugs at a pre-determined location
at a pre-determined time. The concept is, to use an array of transmitting
sources that add together in phase to produce a constructive interference at
a certain focus point inside the human body. To this end, an experimental
setup, called the microwave activation system has been developed and tested
on a body phantom that emulates the human torso. The system presented
in this thesis, operates unobtrusively, i.e. without physically interfering with
the target (patient). The torso phantom is a simple dual-layered cylindrical
structure that contains fat and muscle tissue mimicking media. The core
of the system consists of a single submerged antenna, four external antennas,
four transmitters and four receivers, all designed to operate within the
ISM-band around 2.45 GHz with a bandwidth of 100 MHz.
The wave behaviour inside the phantom is of interest for disclosing essential
information about the limitations of the concept, the phantom and the
system. For these purposes, a twofold operation of the microwave activation
system was performed, which are reciprocal of each other.
In the first operation phase, named mapping, microwaves were transmitted
from within the phantom and were received externally to the phantom.
With this setup, the amplitudes and phases of the transmitted signal
were measured as the submerged source was moved around, inside the phantom.
The measurement results reveal a significant influence of the so-called
creeping waves, on the measured signal. If the submerged source was at
a certain offset from the centre of the phantom, the receiver furthest away
from the submerged source, measured the contribution from the creeping
waves instead of the contribution from the direct path. These creeping waves
(diffracted waves) originated from the face of the phantom from which the
submerged source was closest. Most of the power of the transmitted wave,
exits at that face and followed the curvature of the phantom, on both sides,
and was ultimately received on the other side of the phantom, by the receiver
farthest away from the submerged source.
iv
In the second operation phase of the microwave activation system, named
focusing, four transmitters, external to the phantom, transmitted microwaves
at the phantom. The phases and amplitudes of each of the transmitters were
controlled to provide a constructive interference at a pre-determined focus
point. Focusing microwaves inside the torso phantom was partly accomplished
close to the centre of the phantom. Outside a certain radius from
the centre, the effect of creeping waves is believed to be responsible for the
limitations of focusing. An experiment was performed to verify the presence
of creeping waves.
Due to the inherent high wave attenuation in biological tissues, such as
muscles at microwave frequencies, sensitive receiving structures are suggested
to be integrated on a drug capsule. The capsules are meant to contain the
pharmaceutical drugs and the receiving structure is presented to efficiently
utilize the available power, to be present at the focusing location. Split-ring
resonators are proposed to be integrated on the lid of the capsules which
concentrate their acquired power to high-amplitude electric fields across the
gaps of the split-ring resonators, at the resonance frequency. An optimal conductivity
for the lossy dielectric lid of the capsule is suggested in this work.
The specific conductivity property of the lid that the split-ring resonators are
suggested to be integrated on is, to ensure maximum temperature increase
in the lid. The temperature increase is proposed to be used to melt an adhesive
layer, between the container and its lid, consequently releasing the
drug. Experiments were performed to determine the optimal orientation of
the split-ring resonators, in respect to the polarization of the exciting wave.
Original language | English |
---|
Publisher | DTU Elektro |
---|---|
Number of pages | 243 |
Publication status | Published - 2014 |
Fingerprint
Dive into the research topics of 'Microwave Activation of Drug Release.'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Microwave Activation of Drug Release
Jónasson, S. Þ. (PhD Student), Johansen, T. K. (Main Supervisor), Zhurbenko, V. (Supervisor), Mohr, J. J. (Examiner), Mikkelsen, J. H. (Examiner) & Persson, M. (Examiner)
Eksternt finansieret virksomhed
01/11/2009 → 18/06/2015
Project: PhD