Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation

Wei Zhang, Luise Theil Kuhn, Tania Ramos, Peter Stanley Jørgensen, Bhaskar Reddy Sudireddy, Janet Jonna Bentzen

Research output: Contribution to conferencePosterResearch

134 Downloads (Pure)


CeO2-based materials have received intensive attention as they have a lot of important physical, chemical and electrochemical properties [1]. Recently, Gd-doped CeO2 (CGO)/Ni infiltrate was found to be an effective electrocatalyst, greatly enhancing the electrocatalytic activity for fuel oxidation in solid oxide fuel cells (SOFCs) [2,3].
How stable is the structure of infiltrated nano-sized electrocatalysts under electrochemical operation? This issue is usually addressed by evaluating electrode performance without detailed structural investigations. However, the behavior of electrocatalysts are of paramount importance for performance and performance stability. Therefore an accurate understanding of the microstructure evolution during electrochemical operation will facilitate evaluating performances of SOFC anodes, and in turn optimize its design.
Here we report a wealth of microstructural investigations of Ce0.8Gd0.2O1.9/Ni (hereafter CGO/Ni)-infiltrated Zr0.84Y0.16O1.92 composited Sr0.94Ti0.9Nb0.1O3-δ (STN94/8YSZ) anode in a symmetric cell design under a short electrochemical evaluation test (fingerprint test), applying electrochemical impedance spectroscopy (EIS) at mild 3% H2O/H2 and harsh 50% H2O/H2 environment at temperature up to 850 ºC.
Original languageEnglish
Publication date2012
Number of pages1
Publication statusPublished - 2012
Event27th Meeting of the European Crystallographic Association - Bergen, Norway
Duration: 6 Aug 201211 Aug 2012
Conference number: 27


Conference27th Meeting of the European Crystallographic Association


Dive into the research topics of 'Microstructural evolution of nanosized Ce<sub>0.8</sub>Gd<sub>0.2</sub>O<sub>1.9</sub>/Ni infiltrate in a Zr<sub>0.84</sub>Y<sub>0.16</sub>O<sub>1.92</sub>-Sr<sub>0.94</sub>Ti<sub>0.9</sub>Nb<sub>0.1</sub>O<sub>3-δ</sub> based SOFC anode under electrochemical evaluation'. Together they form a unique fingerprint.

Cite this