Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate - DTU Orbit (29/09/2019)

Microstructural Analysis of Orientation-Dependent Recovery and Recrystallization in a Modified 9Cr-1Mo Steel Deformed by Compression at a High Strain Rate

The evolution of the microstructure and texture during annealing of a modified ferritic/martensitic 9Cr-1Mo steel compressed by dynamic plastic deformation (DPD) to a strain of 2.3 has been investigated using transmission electron microscopy and electron backscatter diffraction. It is found that the duplex 〈111〉 + 〈100〉 fiber texture formed by DPD is transformed during annealing to a dominant 〈111〉 fiber texture, and that crystallites of the 〈111〉 component have an advantage during both nucleation and growth. Detailed characterization of the microstructural morphology, and estimation of the stored energies in 〈111〉 - and 〈100〉 -oriented regions in deformed and annealed samples, as well as investigations of the growth of recrystallizing grains, are used to analyze the annealing behavior. It is concluded that recrystallization in the given material occurs by a combination of oriented nucleation and oriented growth.

General information
Publication status: Published
Organisations: Department of Wind Energy, Materials science and characterization, Department of Mechanical Engineering, Materials and Surface Engineering, Sino-Danish Center for Education and Research, Chinese Academy of Sciences
Contributors: Zhang, Z., Zhang, Y., Mishin, O., Tao, N., Pantleon, W., Juul Jensen, D.
Pages: 4682–4693
Publication date: 2016
Peer-reviewed: Yes

Publication information
Volume: 47
Issue number: 9
ISSN (Print): 1073-5623
Ratings:
BFI (2016): BFI-level 2
Scopus rating (2016): CiteScore 1.91 SJR 1.206 SNIP 1.334
Web of Science (2016): Impact factor 1.874
Web of Science (2016): Indexed yes
Original language: English
Electronic versions:
Microstructural_Analysis_of_Orientation_Dependent_Recovery_and_Recrystallization_in_a_Modified_9Cr_1Mo_Steel_Def ormed_by_Compression_at_a_High_Strain_Rate.pdf
DOIs: 10.1007/s11661-016-3626-0

Bibliographical note
Copyright: The Author(s) 2016. This article is published with open access at Springerlink.com
Source: FindIt
Source ID: 2306364596
Research output: Contribution to journal › Journal article – Annual report year: 2016 › Research › peer-review