Micropatterned Carbon-on-Quartz Electrode Chips for Photocurrent Generation from Thylakoid Membranes

Research output: Contribution to journalJournal article – Annual report year: 2018Researchpeer-review



View graph of relations

Harvesting the energy generated by photosynthetic organisms through light-dependent reactions is a significant step towards a sustainable future energy supply. Thylakoid membranes are the site of photosynthesis, and thus particularly suited for developing photo-bioelectrochemical cells. Novel electrode materials and geometries could potentially improve the efficiency of energy harvesting using thylakoid membranes. For commercial applications, electrodes with large surface areas are needed. Photolithographic patterning of a photoresist, followed by pyrolysis, is a flexible and fast approach for the fabrication of carbon electrodes with tailored properties. In this work, electrode chips consisting of patterned carbon supported on quartz were designed and fabricated. The patterned electrode area is 1 cm2, and the measurement chamber footprint is 0.5 cm2 , one order of magnitude larger than previously-tested electrodes for thylakoid membrane immobilization. The use of a transparent substrate allows back-side illumination, protecting the
bioelectrochemical system from the environment and vice versa. Two different mediators, monomeric ([Ru(NH3)6]3+) and polymeric ([Os(2,2-bipyridine)2-poly(N-vinylimidazole)10Cl]+/2+) are used for evaluating photocurrent generation from thylakoid membranes with different electrode geometries. Current densities up to 71 µA cm-2 are measured upon illumination through the transparent electrode chip with solar simulated irradiance (1000 W m-2).
Original languageEnglish
JournalApplied Energy Materials
Issue number7
Pages (from-to)3313-3322
Number of pages35
Publication statusPublished - 2018
CitationsWeb of Science® Times Cited: No match on DOI

    Research areas

  • Carbon, Bioanode, Thylakoid membranes, Photosynthesis, Pyrolysis , Micropatterning

Download statistics

No data available

ID: 148211766