Abstract
The rapid advances in microfabrication and nanofabrication in combination with the synthesis and discovery of new materials have propelled the drive to develop new technological devices such as smartphones, personal and tablet computers. These devices have changed the way humankind interacts and communicates and this change occurred very quickly due in part to decreased production and commercialization costs. As a result, not only nations with powerful economies but also emerging economies and poor countries can get access to these technologies and experience new ways to interact and instantly communicate what is happening around us. Following the advances of all these communication devices as well as those in microfabrication and nanofabrication and the emergence of new materials, technologies such as lab-on-a-chip (LOC) and micro total analysis systems (microTAS) were also boosted, albeit at a slower pace. LOC and microTAS applications have principally been utilized in the biomedical, food and environmental fields. But lately they have also found their place in the synthesis of new chemical compounds and the fabrication of nanostructures. It has become obvious that the LOC and microTAS technologies need to join forces with those behind the new communication devices which provide sources of power, detection and data transmission complementing the features that lab-on-a-chip and microTAS platforms can offer. An increasing number of microfluidic-based devices, developed both in small start-ups and large pharmaceutical and biomedical companies, is being released and entering the market. This chapter offers an overview of the first events in the history of LOC and microTAS devices, the biggest achievements and the challenges that still need to be overcome in order to accelerate the use of this technology.
Original language | English |
---|---|
Title of host publication | Lab-on-a-Chip Devices and Micro-Total Analysis Systems |
Publisher | Springer |
Publication date | 2015 |
Pages | 1-15 |
Chapter | 1 |
ISBN (Print) | 978-3-319-08686-6 |
ISBN (Electronic) | 978-3-319-08687-3 |
DOIs | |
Publication status | Published - 2015 |