Abstract
The present study investigates the potential of replacing sand with microencapsulated phase change materials (MEPCM) in 3D-printable mortar to provide a promising way to improve thermal performance in 3D-printed buildings. Adding MEPCM significantly enhanced the rheological properties and early hardening evolution of cementitious mortar for 3D printing applications without the need for viscosity modifier agents. In hardened mortars, microstructural analysis and thermal cycling experiments confirmed that MEPCM remained intact and stable within the cementitious environment. The thermal properties of the treated mortars, including latent heat and thermal conductivity, were improved for energy-saving applications. Despite this, the compressive strength of the mortars dropped considerably by increasing the concentration of MEPCM while a strength of above 20 MPa was maintained. Simulation results from 3D Finite Element Method (FEM) and 1D reduced order model (ROM) closely matched the experimental data from printed walls in a thermal setup, validating the use of 1D ROM simulations for long-term predictions. In a case study, a printed wall where MEPCM replaced 80 % of the sand showed a ∼40 % reduction in energy consumption compared to mortar without MEPCM under real weather conditions.
Original language | English |
---|---|
Article number | 119106 |
Journal | Energy Conversion and Management |
Volume | 321 |
Number of pages | 14 |
ISSN | 0196-8904 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- 3D printing
- Energy reduction
- Mortar
- Portland cement
- microencapsulated PCM