Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin - DTU Orbit (07/10/2019)

Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin

Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in genetically-engineered Escherichia coli BL21(DE3). The exogenously supplied TFN was converted to ATN by 3-O-rhamnosylation utilizing the endogeneous TDP-l-rhamnose in presence of UDP-glycosyltransferase (ArGT3, Gene Bank accession number: At1g30530) from Arabidopsis thaliana. Upon improving the intracellular TDP-l-rhamnose pool by knocking out the chromosomal glucose phosphate isomerase (pgi) and d-glucose-6-phosphate dehydrogenase (zwf) deletion along with the overexpression of rhamnose biosynthetic pathway increases the biotransformation product, ATN with total conversion of similar to 49.5 +/- 1.67% from 100 mu M of taxifolin. In addition, the cytotoxic effect of taxifolin-3-O-rhamnoside on PANC-1 and A-549 cancer cell lines was assessed for establishing ATN as potent antitumor compound.

General information

Publication status: Published
Organisations: Novo Nordisk Foundation Center for Biosustainability, iLoop, Duy Tan University, Sun Moon University
Number of pages: 10
Publication date: 2017
Peer-reviewed: Yes

Publication information

Journal: World Journal of Microbiology and Biotechnology
Volume: 33
Article number: 36
ISSN (Print): 0959-3993
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.14 SJR 0.604 SNIP 0.826
Web of Science (2017): Impact factor 2.1
Web of Science (2017): Indexed yes
Original language: English
Keywords: Biotransformation, Cytotoxicity, Escherichia coli, Flavonoid, Glycosylation
DOIs:
10.1007/s11274-017-2208-7
Source: FindIt
Source ID: 2351497351
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review