Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions

Pier-Luc Tremblay, Daniel Höglund, Fariza Ammam, Tian Zhang

Research output: Chapter in Book/Report/Conference proceedingConference abstract in proceedingsResearchpeer-review

Abstract

Powering microbes with electrical energy to produce valuable chemicals such as biofuels has recently gained traction as a biosustainable production strategy for the reduction of our dependence to oil. Microbial electrosynthesis (MES) is one of the few bioelectrochemical approaches developed in the last decade that could significantly change the current ways of synthesizing chemicals. MES is a process in which electroautotrophic microbes reduce CO2 to multicarbon organics using electrical current as a source of electron. Electricity necessary for MES can be harvested from renewable resources such as solar energy, wind turbine or wastewater treatment processes. The net outcome is that renewable energy get store in the covalent bonds of valuable chemicals synthesized from greenhouse gas. However, low electron transferrates from the electrode to microbes, poor adherence of cells on the electrode, and a general lack of knowledge about electron transfer mechanisms have been the main obstacles to MES commercialization todate. Developing genetic systems for known electroautotrophs, screening for better MES chassis organisms and superior electrochemical hardware, establishing alternative MES processes relying on co-cultures and investigating extracellular electron transfer from the cathode to the microbes are some of the strategies that we are implementing to transform MES into a commercially viable technology.
Original languageEnglish
Title of host publicationAbstract Book - DTU Sustain Conference 2014
Number of pages1
Place of PublicationKgs. Lyngby
PublisherTechnical University of Denmark
Publication date2014
Publication statusPublished - 2014
EventDTU Sustain Conference 2014 - Technical University of Denmark, Lyngby, Denmark
Duration: 17 Dec 201417 Dec 2014
http://www.sustain.dtu.dk/

Conference

ConferenceDTU Sustain Conference 2014
LocationTechnical University of Denmark
Country/TerritoryDenmark
CityLyngby
Period17/12/201417/12/2014
Internet address

Fingerprint

Dive into the research topics of 'Microbial electrosynthesis: understanding and strengthening microbe-electrode interactions'. Together they form a unique fingerprint.

Cite this