Microbial biomass and activity in subsurface sediments from Vejen, Denmark

    Research output: Contribution to journalJournal articleResearchpeer-review

    Abstract

    Subsurface sediment samples were collected from 4 to 31 m below landsurface in glacio-fluvial sediments from the Quaternary period. The samples were described in terms of pH, electrical conductivity, chloride concentration, organic matter content, and grain size distribution. Viable counts of bacteria varied from 0.5 to 1,203 x 103 colony forming units/g dry weight (gdw); total numbers of bacteria acridine orange direct counts (AODC) varied from 1.7 to 147 × 107 cells/gdw; growth rates (incorporation of [3H]-thymidine) varied from 1.4 to 60.7 × 104 cells/(gdw · day); and rate constants for mineralization of 14C-labelled compounds varied from 0.2 to 2.3 × 10−3 ml/(dpm · day) for acetate, and from 0 to 2.0 × 10−3 ml/(dpm · day) for phenol. Sediment texture influenced the total number of bacteria and potential for mineralization; with increasing content of clay and silt and decreasing content of sand, AODC increased and the mineralization rate declined. Intrinsic permeability calculated from grain size correlated positively with mineralization rate for acetate. Statistical correlation analysis showed high correlations between some of the abiotic parameters, but it was not possible to point out a single abiotic parameter that could explain the variation of size and activity of the microbial population. The microbial data obtained in these geologically young sediments were compared to literature data from older sediments, and this comparison showed that age and type of geological formation might be important for the size and activity of the microbial populations.
    Original languageEnglish
    JournalMicrobial Ecology
    Volume23
    Issue number3
    Pages (from-to)303-317
    ISSN0095-3628
    DOIs
    Publication statusPublished - 1992

    Fingerprint

    Dive into the research topics of 'Microbial biomass and activity in subsurface sediments from Vejen, Denmark'. Together they form a unique fingerprint.

    Cite this