Microalgae and cyanobacteria modeling in water resource recovery facilities

Microalgal and cyanobacterial resource recovery systems could significantly advance nutrient recovery from wastewater by achieving effluent nitrogen (N) and phosphorus (P) levels below the current limit of technology. The successful implementation of phytoplankton, however, requires the formulation of process models that balance fidelity and simplicity to accurately simulate dynamic performance in response to environmental conditions. This work synthesizes the range of model structures that have been leveraged for algae and cyanobacteria modeling and core model features that are required to enable reliable process modeling in the context of water resource recovery facilities. Results from an extensive literature review of over 300 published phytoplankton models are presented, with particular attention to similarities with and differences from existing strategies to model chemotrophic wastewater treatment processes (e.g., via the Activated Sludge Models, ASMs). Building on published process models, the core requirements of a model structure for algal and cyanobacterial processes are presented, including detailed recommendations for the prediction of growth (under phototrophic, heterotrophic, and mixotrophic conditions), nutrient uptake, carbon uptake and storage, and respiration.

General information
Publication status: Published
Organisations: Water Technologies, Department of Environmental Engineering, University of Illinois at Urbana-Champaign, Irstea, Universite Cote d’Azur, University of Bath, Hydromantis ESS Inc., Universite de Montpellier, Aalborg University
Corresponding author: Guest, J. S.
Number of pages: 18
Publication date: 1 Feb 2019
Peer-reviewed: Yes

Publication information
Journal: Water Research X
Volume: 2
Article number: 100024
ISSN (Print): 0043-1354
Ratings:
BFI (2019): BFI-level 2
Web of Science (2019): Indexed yes
Original language: English
Keywords: Growth, Lipid storage, Nutrient uptake, Starch storage, Wastewater treatment plant (WWTP)
Electronic versions:
1_s2.0_S2589914718300240_main.pdf
DOIs:
10.1016/j.wroa.2018.100024
Source: Scopus
Source ID: 85061062565
Research output: Contribution to journal › Review – Annual report year: 2019 › Research › peer-review