TY - JOUR
T1 - Method optimization and quality assurance in speciation analysis using high performance liquid chromatography with detection by inductively coupled plasma mass spectrometry
AU - Larsen, Erik Huusfeldt
PY - 1998
Y1 - 1998
N2 - Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the separation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continuously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
AB - Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the separation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continuously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.
U2 - 10.1016/S0584-8547(97)00137-7
DO - 10.1016/S0584-8547(97)00137-7
M3 - Journal article
SN - 0584-8547
VL - 53
SP - 253
EP - 265
JO - Spectrochimica Acta Part B: Atomic Spectroscopy
JF - Spectrochimica Acta Part B: Atomic Spectroscopy
IS - 2
ER -