Metamaterial anisotropic flux concentrators and magnetic arrays

A metamaterial magnetic flux concentrator is investigated in detail in combination with a Halbach cylinder of infinite length. A general analytical solution to the field is determined and the magnetic figure of merit is determined for a Halbach cylinder with a flux concentrator. It is shown that an ideal flux concentrator will not change the figure of merit of a given magnet design, while the non-ideal will always lower it. The geometric parameters producing maximum figure of merit, i.e., the most efficient devices, are determined. The force and torque between two concentric Halbach cylinders with flux concentrators is determined and the maximum torque is found. Finally, the effect of non-ideal flux concentrators and the practical use of flux concentrators, as well as demagnetization issues, is discussed. © 2013 AIP Publishing LLC.

General information
Publication status: Published
Organisations: Department of Energy Conversion and Storage, Electrofunctional materials, Secretariat, IT
Contributors: Bjørk, R., Smith, A., Bahl, C. R.
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Journal of Applied Physics
Volume: 114
Issue number: 5
Article number: 053912
ISSN (Print): 0021-8979
Ratings:
BFI (2013): BFI-level 1
Scopus rating (2013): CiteScore 2.24 SJR 1.155 SNIP 1.286
Web of Science (2013): Impact factor 2.185
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Cylinders (shapes), Metamaterials, Solar concentrators
Electronic versions:
Metamaterial_anisotropic_flux.pdf
DOIs:
10.1063/1.4816096

Bibliographical note
Copyright (2013) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in J. Appl. Phys. 114, 053912 (2013) and may be found at http://jap.aip.org/resource/1/JAPIAU/v114/i5.
Source: dtu
Source ID: n:oai:DTIC-ART:compendex/390992083::31542
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review