TY - JOUR
T1 - Melt pool feature analysis using a high-speed coaxial monitoring system for laser powder bed fusion of Ti-6Al-4 V grade 23
AU - Thanki, Aditi
AU - Goossens, Louca
AU - Ompusunggu, Agusmian Partogi
AU - Bayat, Mohamad
AU - Bey-Temsamani, Abdellatif
AU - Van Hooreweder, Brecht
AU - Kruth, Jean-Pierre
AU - Witvrouw, Ann
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
PY - 2022
Y1 - 2022
N2 - In laser powder bed fusion (LPBF), defects such as pores or cracks can seriously affect the final part quality and lifetime. Keyhole porosity, being one type of porosity defects in LPBF, results from excessive energy density which may be due to changes in process parameters (namely, laser power and scan speed) and/or result from the part’s geometry and/or hatching strategies. To study the possible occurrence of keyhole pores, experimental work and simulations were carried out for optimum and high volumetric energy density conditions in Ti-6Al-4 V grade 23. By decreasing the scanning speed from 1000 to 500 mm/s for a fixed laser power of 170 W, keyhole porosities are formed and later observed by X-ray computed tomography. Melt pool images are recorded in real-time during the LPBF process by using a high-speed coaxial Near-Infrared (NIR) camera monitoring system. The recorded images are then pre-processed using a set of image processing steps to generate binary images. From the binary images, geometrical features of the melt pool and features that characterize the spatter particle formation and ejection from the melt pool are calculated. The experimental data clearly show spatter patterns in case of keyhole porosity formation at low scan speed. A correlation between number of pores and amount of spatter is observed. Besides the experimental work, a previously developed high fidelity finite volume numerical model was used to simulate the melt pool dynamics with similar process parameters as used during the experiments. Simulation results illustrate and confirm the keyhole porosity formation by decreasing laser scan speed.
AB - In laser powder bed fusion (LPBF), defects such as pores or cracks can seriously affect the final part quality and lifetime. Keyhole porosity, being one type of porosity defects in LPBF, results from excessive energy density which may be due to changes in process parameters (namely, laser power and scan speed) and/or result from the part’s geometry and/or hatching strategies. To study the possible occurrence of keyhole pores, experimental work and simulations were carried out for optimum and high volumetric energy density conditions in Ti-6Al-4 V grade 23. By decreasing the scanning speed from 1000 to 500 mm/s for a fixed laser power of 170 W, keyhole porosities are formed and later observed by X-ray computed tomography. Melt pool images are recorded in real-time during the LPBF process by using a high-speed coaxial Near-Infrared (NIR) camera monitoring system. The recorded images are then pre-processed using a set of image processing steps to generate binary images. From the binary images, geometrical features of the melt pool and features that characterize the spatter particle formation and ejection from the melt pool are calculated. The experimental data clearly show spatter patterns in case of keyhole porosity formation at low scan speed. A correlation between number of pores and amount of spatter is observed. Besides the experimental work, a previously developed high fidelity finite volume numerical model was used to simulate the melt pool dynamics with similar process parameters as used during the experiments. Simulation results illustrate and confirm the keyhole porosity formation by decreasing laser scan speed.
U2 - 10.1007/s00170-022-09168-2
DO - 10.1007/s00170-022-09168-2
M3 - Journal article
AN - SCOPUS:85128009641
SN - 0268-3768
VL - 120
SP - 6497
EP - 6514
JO - International Journal of Advanced Manufacturing Technology
JF - International Journal of Advanced Manufacturing Technology
ER -