Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation

Casper Junker Engelin, Thomas Jensen, Sergio Rodríguez-Rodríguez, Peter Fristrup

Research output: Contribution to journalJournal articleResearchpeer-review

1446 Downloads (Pure)


The mechanism for the palladium–catalyzed allylic C–H activation was investigated using a combination of experimental and theoretical methods. A Hammett study revealed a buildup of a partial negative charge in the rate-determining step, while determination of the kinetic isotope effect (KIE) indicated that the C–H bond is broken in the turnover-limiting transition state. The-se experimental findings were further substantiated by carrying out a detailed density functional theory (DFT) based investigation of the entire catalytic cycle. The DFT modeling supports a mechanism where a coordinated acetate acts as a base in an intramolecular fashion during the C–H activation step. The re-oxidation of palladium was found to reach a similar energy level as that of the C–H activation. Calculations of turnover frequencies (TOF) for the entire catalytic cycle for the C–H alkylation were used to acquire a better understanding of the experimental KIE value. The good correspondence between the experimental KIE and the computed KIE values allows a discrimination between the acetate acting in an intramolecular fashion (C–H alkylation) and an intermolecular fashion (C–H acetoxylation and C–H amination).
Original languageEnglish
JournalA C S Catalysis
Pages (from-to)294-302
Publication statusPublished - 2013

Bibliographical note

Copyright © 2013 American Chemical Society


  • C-H activation
  • Allylic alkylation
  • Catalysis
  • Palladium
  • Mechanism
  • Kinetic irotope effect


Dive into the research topics of 'Mechanistic Investigation of Palladium–Catalyzed Allylic C–H Activation'. Together they form a unique fingerprint.

Cite this