Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite

Flemming Yssing Hansen, Ludwig Walter Bruch, H. Taub

Research output: Contribution to journalJournal articleResearchpeer-review

371 Downloads (Pure)

Abstract

The melting mechanism in submonolayer films of N-2 molecules adsorbed on the basal planes of graphite is studied using molecular-dynamics simulations. The melting is strongly correlated with the formation of vacancies in the films. As the temperature increases, the edges of the submonolayer patch become atomically rough and vacancies are first created there. Then there is an onset temperature at which the vacancies penetrate into the patch. At an intermediate region of coverages similar to 0.3-0.8 commensurate layers, there is sufficient free volume for the film to melt at that temperature. At higher coverages, similar to 0.8-1.0 layers, a solid with defects is formed, and additional free volume must be created by higher energy mechanisms such as layer promotion for melting to occur; thus, the melting temperature rises with coverage. In contrast, for very small patches, the atomically rough Bone penetrates the entire patch at a lower temperature where the film melts. The calculated melting temperatures are significantly lower than observed experimentally, indicating a severe fault in the potential model. A possible source of the discrepancy is identified.
Original languageEnglish
JournalPhysical Review B
Volume52
Issue number11
Pages (from-to)8515-8527
ISSN2469-9950
DOIs
Publication statusPublished - 1995

Bibliographical note

Copyright (1995) by the American Physical Society.

Keywords

  • BUTANE
  • SURFACE
  • N-2
  • SIMULATIONS
  • TRANSITION
  • LINEAR-MOLECULES
  • DYNAMICS
  • MONOLAYERS
  • ETHYLENE
  • N2

Fingerprint

Dive into the research topics of 'Mechanism of melting in submonolayer films of nitrogen molecules adsorbed on the basal planes of graphite'. Together they form a unique fingerprint.

Cite this