Abstract
Original language | English |
---|---|
Journal | Plasma Physics and Controlled Fusion |
Volume | 54 |
Pages (from-to) | 015008 |
ISSN | 0741-3335 |
DOIs | |
Publication status | Published - 2012 |
Cite this
}
Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering. / Stejner Pedersen, Morten; Korsholm, Søren Bang; Nielsen, Stefan Kragh; Salewski, Mirko; Bindslev, Henrik; Brezinsek, S.; Furtula, Vedran; Leipold, Frank; Michelsen, Poul; Meo, Fernando; Moseev, Dmitry; Bürger, A.; Kantor, M.; de Baar, M.
In: Plasma Physics and Controlled Fusion, Vol. 54, 2012, p. 015008.Research output: Contribution to journal › Journal article › Research › peer-review
TY - JOUR
T1 - Measurements of plasma composition in the TEXTOR tokamak by collective Thomson scattering
AU - Stejner Pedersen, Morten
AU - Korsholm, Søren Bang
AU - Nielsen, Stefan Kragh
AU - Salewski, Mirko
AU - Bindslev, Henrik
AU - Brezinsek, S.
AU - Furtula, Vedran
AU - Leipold, Frank
AU - Michelsen, Poul
AU - Meo, Fernando
AU - Moseev, Dmitry
AU - Bürger, A.
AU - Kantor, M.
AU - de Baar, M.
PY - 2012
Y1 - 2012
N2 - We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas consisting of hydrogen, deuterium and 3He can be accurately reproduced by theory and yield inferred plasma compositions consistent with expectations. The potential to use CTS for measurements of plasma composition is of significant interest since CTS is well suited for reactor environments and since there is at present no established method to measure the fuel ion density ratio in the core of a burning fusion plasma.
AB - We demonstrate the use of collective Thomson scattering (CTS) for spatially localized measurements of the isotopic composition of magnetically confined fusion plasmas. The experiments were conducted in the TEXTOR tokamak by scattering millimeter-wave probe radiation off plasma fluctuations with wave vector components nearly perpendicular to the magnetic field. Under such conditions the sensitivity of the CTS spectrum to plasma composition is enhanced by the spectral signatures of the ion cyclotron motion and of weakly damped ion Bernstein waves. Recent experiments on TEXTOR demonstrated the ability to resolve these signatures in the CTS spectrum as well as their sensitivity to the ion species mix in the plasma. This paper shows that the plasma composition can be inferred from the measurements through forward modeling of the CTS spectrum. We demonstrate that spectra measured in plasmas consisting of hydrogen, deuterium and 3He can be accurately reproduced by theory and yield inferred plasma compositions consistent with expectations. The potential to use CTS for measurements of plasma composition is of significant interest since CTS is well suited for reactor environments and since there is at present no established method to measure the fuel ion density ratio in the core of a burning fusion plasma.
U2 - 10.1088/0741-3335/54/1/015008
DO - 10.1088/0741-3335/54/1/015008
M3 - Journal article
VL - 54
SP - 015008
JO - Plasma Physics and Controlled Fusion
JF - Plasma Physics and Controlled Fusion
SN - 0741-3335
ER -