Measurement of total sound energy density in enclosures at low frequencies: Abstract of paper

Finn Jacobsen (Invited author)

Research output: Contribution to journalConference articlepeer-review

1560 Downloads (Pure)

Abstract

Many acoustic measurements rely on determining the total sound energy in an enclosure; and this quantity is usually estimated by measuring the mean square pressure at a number of discrete positions. Almost 30 years ago it was shown theoretically that the normalised spatial variance of the total sound energy density (potential and kinetic) is one third of the normalised spatial variance of the potential energy density (the mean square pressure) in a reverberant sound field above the Schroeder frequency. About ten years later this prediction was confirmed experimentally. However, until recently measurement of the total sound energy density (in air) has required an elaborate arrangement based on finite different approximations using at least four matched pressure microphones; therefore the method has never come into use. However, with the advent of a three-dimensional particle velocity transducer it has become somewhat easier to measure total rather than only potential energy density in a sound field. This paper examines the spatial uniformity of potential, kinetic and total sound energy density in enclosures theoretically and experimentally with particular emphasis on the frequency range below the Schroeder frequency.
Original languageEnglish
JournalAcoustical Society of America. Journal
Volume123
Issue number5
Pages (from-to)3439
ISSN0001-4966
DOIs
Publication statusPublished - 2008
EventAcoustics'08 - Paris, France
Duration: 29 Jun 20084 Jul 2008
http://webistem.com/acoustics2008/acoustics2008/cd1/data/index.html

Conference

ConferenceAcoustics'08
Country/TerritoryFrance
CityParis
Period29/06/200804/07/2008
Internet address

Bibliographical note

Copyright (2008) Acoustical Society of America. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the Acoustical Society of America.

Fingerprint

Dive into the research topics of 'Measurement of total sound energy density in enclosures at low frequencies: Abstract of paper'. Together they form a unique fingerprint.

Cite this