Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification

    Research output: Contribution to journalJournal articleResearchpeer-review

    982 Downloads (Pure)

    Abstract

    In a "conventional" thermochemical biorefinery, carbon is emitted from the plant in the form of CO2 to make the synthesis gas from the gasifier suitable for fuel production. The alternative to this carbon removal is to add hydrogen to the plant. By adding hydrogen, it is possible to more than double the biofuel production per biomass input by converting almost all of the carbon in the biomass feed to carbon stored in the biofuel product. Water or steam electrolysis can supply the hydrogen to the biorefinery and also the oxygen for the gasifier. This paper presents the design and thermodynamic analysis of two biorefineries integrating water electrolysis for the production of methanol. In both plants, torrefied woody biomass is supplied to an entrained flow gasifier, but in one of the plants, the torrefaction process occurs on-site, as it is integrated with the entrained flow gasification process. The analysis shows that the biorefinery with integrated torrefaction has a higher biomass to methanol energy ratio (136% vs. 101%) as well as higher total energy efficiency (62% vs. 56%). By comparing with two identical biorefineries without electrolysis, it is concluded that the biorefinery with integrated torrefaction benefits most from the integration of electrolysis.
    Original languageEnglish
    JournalEnergy
    Volume85
    Pages (from-to)94-101
    ISSN0360-5442
    DOIs
    Publication statusPublished - 2015

    Keywords

    • Biofuel
    • Biorefinery
    • Electrolysis
    • Gasification
    • Thermodynamic analysis
    • Torrefaction

    Fingerprint

    Dive into the research topics of 'Maximizing biofuel production in a thermochemical biorefinery by adding electrolytic hydrogen and by integrating torrefaction with entrained flow gasification'. Together they form a unique fingerprint.

    Cite this