Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping

Mirkó Palla, Filippo Bosco, Jaeyoung Yang, Tomas Rindzevicius, Tommy Sonne Alstrøm, Michael Stenbæk Schmidt, Qiao Lin, Jingyue Ju, Anja Boisen

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

Surface-enhanced Raman spectroscopy (SERS) based on nanostructured platforms is a promising technique for quantitative and highly sensitive detection of biomolecules in the field of analytical biochemistry. Here, we report a mathematical model to predict experimental SERS signal (or hotspot) intensity distributions of target molecules on receptor-functionalized nanopillar substrates for biomolecular quantification. We demonstrate that by utilizing only a small set of empirically determined parameters, our general theoretical framework agrees with the experimental data particularly well in the picomolar concentration regimes. This developed model may be generally used for biomolecular quantification using Raman mapping on SERS substrates with planar geometries, in which the hotspots are approximated as electromagnetic enhancement fields generated by closely spaced dimers. Lastly, we also show that the detection limit of a specific target molecule, TAMRA-labeled vasopressin, approaches the single molecule level, thus opening up an exciting new chapter in the field of SERS quantification.
Original languageEnglish
JournalRSC Advances
Volume5
Issue number104
Pages (from-to)85845-85853
ISSN2046-2069
DOIs
Publication statusPublished - 2015

Fingerprint

Dive into the research topics of 'Mathematical model for biomolecular quantification using large-area surface-enhanced Raman spectroscopy mapping'. Together they form a unique fingerprint.

Cite this