Mars Environment and Magnetic Orbiter Scientific and Measurement Objectives

F. Leblanc, B. Langlais, T. Fouchet, S. Barabash, D. Breuer, E. Chassefière, A. Coates, V. Dehant, F. Forget, H. Lammer, S. Lewis, M. Lopez-Valverde, M. Mandea, M. Menvielle, A. Pais, M. Paetzold, P. Read, C. Sotin, P. Tarits, Susanne Vennerstrøm

Research output: Contribution to journalJournal articleResearchpeer-review

Abstract

In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission-Mars Environment and Magnetic Orbiter (MEMO)-was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 M(sic)). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
Original languageEnglish
JournalAstrobiology
Volume9
Issue number1
Pages (from-to)71-89
ISSN1531-1074
DOIs
Publication statusPublished - 2009

Keywords

  • Magnetic field
  • Solar wind
  • Future space mission
  • Surface
  • Mars
  • Atmosphere

Fingerprint Dive into the research topics of 'Mars Environment and Magnetic Orbiter Scientific and Measurement Objectives'. Together they form a unique fingerprint.

Cite this