TY - JOUR
T1 - Markov-switching model for nonstationary runoff conditioned on El Nino information
AU - Gelati, Emiliano
AU - Madsen, H.
AU - Rosbjerg, Dan
PY - 2010
Y1 - 2010
N2 - We define a Markov-modulated autoregressive model with exogenous input (MARX) to generate runoff scenarios using climatic information. Runoff parameterization is assumed to be conditioned on a hidden climate state following a Markov chain, where state transition probabilities are functions of the climatic input. MARX allows stochastic modeling of nonstationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We apply MARX to inflow time series of the Daule Peripa reservoir (Ecuador). El Nino Southern Oscillation (ENSO) information is used to condition runoff parameterization. Among the investigated ENSO indexes, the NINO 1+2 sea surface temperature anomalies and the trans-Nino index perform best as predictors. In the perspective of reservoir optimization at various time scales, MARX produces realistic long-term scenarios and short-term forecasts, especially when intense El Nino events occur. Low predictive ability is found for negative runoff anomalies, as no climatic index correlating properly with negative inflow anomalies has yet been identified.
AB - We define a Markov-modulated autoregressive model with exogenous input (MARX) to generate runoff scenarios using climatic information. Runoff parameterization is assumed to be conditioned on a hidden climate state following a Markov chain, where state transition probabilities are functions of the climatic input. MARX allows stochastic modeling of nonstationary runoff, as runoff anomalies are described by a mixture of autoregressive models with exogenous input, each one corresponding to a climate state. We apply MARX to inflow time series of the Daule Peripa reservoir (Ecuador). El Nino Southern Oscillation (ENSO) information is used to condition runoff parameterization. Among the investigated ENSO indexes, the NINO 1+2 sea surface temperature anomalies and the trans-Nino index perform best as predictors. In the perspective of reservoir optimization at various time scales, MARX produces realistic long-term scenarios and short-term forecasts, especially when intense El Nino events occur. Low predictive ability is found for negative runoff anomalies, as no climatic index correlating properly with negative inflow anomalies has yet been identified.
U2 - 10.1029/2009WR007736
DO - 10.1029/2009WR007736
M3 - Journal article
VL - 46
SP - W02517
JO - Water Resources Research
JF - Water Resources Research
SN - 0043-1397
ER -