TY - JOUR
T1 - Marker discovery and associations with β-carotene content in Indian dairy cattle and buffalo breeds
AU - Bertolini, Francesca
AU - Chinchilla-Vargas, J
AU - Khadse, J R
AU - Juneja, A
AU - Deshpande, P D
AU - Kakramjar, P M
AU - Karlekar, A R
AU - Pande, A B
AU - Fernando, Rohan L
AU - Rothschild, M F
PY - 2019
Y1 - 2019
N2 - Vitamin A is essential for human health, but current intake levels in many developing countries such as India are too low due to malnutrition. According to the World Health Organization, an estimated 250 million preschool children are vitamin A deficient globally. This number excludes pregnant women and nursing mothers, who are particularly vulnerable. Efforts to improve access to vitamin A are key because supplementation can reduce mortality rates in young children in developing countries by around 23%. Three key genes, BCMO1, BCO2, and SCARB1, have been shown to be associated with the amount of β-carotene (BC) in milk. Whole-genome sequencing reads from the coordinates of these 3 genes in 202 non-Indian cattle (141 Bos taurus, 61 Bos indicus) and 35 non-Indian buffalo (Bubalus bubalis) animals from several breeds were collected from data repositories. The number of SNP detected in the coding regions of these 3 genes ranged from 16 to 26 in the 3 species, with 5 overlapping SNP between B. taurus and B. indicus. All these SNP together with 2 SNP in the upstream part of the gene but already present in dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) were used to build a custom Sequenom array. Blood for DNA and milk samples for BC were obtained from 2,291 Indian cows of 5 different breeds (Gir, Holstein cross, Jersey Cross, Tharparkar, and Sahiwal) and 2,242 Indian buffaloes (Jafarabadi, Murrah, Pandharpuri, and Surti breeds). The DNA was extracted and genotyped with the Sequenom array. For each individual breed and the combined breeds, SNP with an association that had a P-value
AB - Vitamin A is essential for human health, but current intake levels in many developing countries such as India are too low due to malnutrition. According to the World Health Organization, an estimated 250 million preschool children are vitamin A deficient globally. This number excludes pregnant women and nursing mothers, who are particularly vulnerable. Efforts to improve access to vitamin A are key because supplementation can reduce mortality rates in young children in developing countries by around 23%. Three key genes, BCMO1, BCO2, and SCARB1, have been shown to be associated with the amount of β-carotene (BC) in milk. Whole-genome sequencing reads from the coordinates of these 3 genes in 202 non-Indian cattle (141 Bos taurus, 61 Bos indicus) and 35 non-Indian buffalo (Bubalus bubalis) animals from several breeds were collected from data repositories. The number of SNP detected in the coding regions of these 3 genes ranged from 16 to 26 in the 3 species, with 5 overlapping SNP between B. taurus and B. indicus. All these SNP together with 2 SNP in the upstream part of the gene but already present in dbSNP (https://www.ncbi.nlm.nih.gov/projects/SNP/) were used to build a custom Sequenom array. Blood for DNA and milk samples for BC were obtained from 2,291 Indian cows of 5 different breeds (Gir, Holstein cross, Jersey Cross, Tharparkar, and Sahiwal) and 2,242 Indian buffaloes (Jafarabadi, Murrah, Pandharpuri, and Surti breeds). The DNA was extracted and genotyped with the Sequenom array. For each individual breed and the combined breeds, SNP with an association that had a P-value
KW - Beta-carotene
KW - Buffalo
KW - Cattle
KW - Milk
KW - Single nucleotide polymorphism
U2 - 10.3168/jds.2019-16361
DO - 10.3168/jds.2019-16361
M3 - Journal article
C2 - 31477308
SN - 0022-0302
VL - 102
SP - 10039
EP - 10055
JO - Journal of Dairy Science
JF - Journal of Dairy Science
IS - 11
ER -