Projects per year
Abstract
Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a
new promising product for high current applications such as electro-magnets and current
transmission cables. The tapes are made by the oxide powder in tube (OPIT) method
implying drawing and rolling of silver tubes containing ceramic powder. The final product is a
composite tape, where ceramic superconducting fibres are embedded in a silver matrix. The
critical current density Je [kA/cm 2 ] is the primary quality parameter of the product. The quality
of the superconducting tape depends very much on the mechanical and thermal processes
applied. One of the most crucial processes is probably the flat rolling process, where the
round or square wire is rolled to form a thin tape (about 3 mm x 0.2 mm), while the density of
the powder fibres increase and the fibres obtain their final geometry. For instance rolling a
tape to a thickness of 250 µm may give a very high Je, whereas further reduction to 200 µm
may be fatal.
In the present work the flat rolling process is analysed systematically from a mechanical
forming point of view. This work implies
· Mechanical characterisation of the plastic parameters of the superconducting ceramic
powder Bi2Sr2CaCu2O by a three-point test procedure implying die compaction,
diametrical compression and uniaxial compression.
· Application of plastic parameters to the constitutive model Drucker/Prager-cap. This
model features mean pressure dependent flow stress and volumetric strains.
· Numerical modelling of the density evolution in the flat rolling process by the finite element
method (FEM). The model applies the Drucker-Prager/cap model and the presently
obtained plastic parameters for the powder. Comparing to experimental values FEM
gives a very good prediction of the density in the individual fibres.
· The stresses and strains in the deformation zone are analysed. It is concluded that more
detailed mechanical tests and a more detailed constitutive plasticity model is desirable in
order to improve the precision of the numerical modelling. New test equipment is
designed implying the new powder in flexible die (PIFD) test.
· Experimental investigation of the strains in flat rolling and their influence on the critical
current density. It is shown that it is important to control the ratio between length strain
and width strain during the thickness reduction in order to obtain a good quality. A new
parameter, the logarithmic strain ratio (LSR), describing the ratio between length and
width strain is invented. A new rolling strategy, called flexible rolling, implying multistep
rolling with different roll diameters is invented as a technique for controlling the stresses
and strains in the flat rolling process. A flexible rolling mill with easy exchangeable rolls
ranging from Ø50 mm to Ø270 mm is designed, and the technique shows promising
results regarding critical current density.
The present work contributes to a better understanding of the flat rolling process and the
behaviour of the implied materials.
Original language | English |
---|
Publisher | IPL |
---|---|
Number of pages | 136 |
Publication status | Published - 2001 |
Externally published | Yes |
Fingerprint
Dive into the research topics of 'Manufacturing of Superconductors'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Fremstilling af superledere
Bech, J. I. (PhD Student), Martins, P. A. F. (Examiner), Brøndsted, P. (Examiner), Wanheim, T. (Examiner) & Bay, N. O. (Main Supervisor)
01/08/1998 → 03/12/2001
Project: PhD