Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

Manganese-Catalyzed Cross-Coupling of Aryl Halides and Grignard Reagents by a Radical Mechanism

The substrate scope and the mechanism have been investigated for the MnCl₂-catalyzed cross-coupling reaction between aryl halides and Grignard reagents. The transformation proceeds rapidly and in good yield when the aryl halide component is an aryl chloride containing a cyano or an ester group in the para position or a cyano group in the ortho position. A range of other substituents gave no conversion of the aryl halide or led to the formation of side products. A broader scope was observed for the Grignard reagents, where a variety of alkyl- and arylmagnesium chlorides participated in the coupling. Two radical-clock experiments were carried out, and in both cases an intermediate aryl radical was successfully trapped. The cross-coupling reaction is therefore believed to proceed by an SRN¹ mechanism, with a triorganomanganate complex serving as the most likely nucleophile and single-electron donor. Other mechanistic scenarios were excluded based on the substrate scope of the aryl halide.

General information
Publication status: Published
Organisations: Department of Chemistry, Organic Chemistry, Risø National Laboratory for Sustainable Energy, University of Gothenburg
Contributors: Antonacci, G., Ahlburg, A., Fristrup, P., Norrby, P., Madsen, R.
Pages: 4758-4764
Publication date: 2017
Peer-reviewed: Yes

Publication information
Volume: 2017
Issue number: 32
ISSN (Print): 1434-193X
Ratings:
BFI (2017): BFI-level 1
Scopus rating (2017): CiteScore 2.65 SJR 1.037 SNIP 0.655
Web of Science (2017): Impact factor 2.882
Web of Science (2017): Indexed yes
Original language: English
Keywords: Cross-coupling, Grignard reagents, Manganese, Radical reactions, Reaction mechanisms, Earth-abundant metals
Electronic versions:
EuropeanJournalofOrganicChemistry4758.pdf. Embargo ended: 15/07/2018
DOI:
10.1002/ejoc.201700981
Source: FindIt
Source ID: 2373535947
Research output: Contribution to journal › Journal article – Annual report year: 2017 › Research › peer-review