TY - JOUR
T1 - Magnetoplasmons in monolayer black phosphorus structures
AU - You, Yun
AU - Gonçalves, P. A. D.
AU - Shen, Linfang
AU - Wubs, Martijn
AU - Deng, Xiaohua
AU - Xiao, Sanshui
PY - 2019
Y1 - 2019
N2 - Two-dimensional materials supporting deep-subwavelength plasmonic modes can also exhibit strong magneto-optical responses. Here, we theoretically investigate magnetoplasmons (MPs) in monolayer black phosphorus (BP) structures under moderate static magnetic fields. We consider three different structures, namely, a continuous BP monolayer, an edge formed by a semi-infinite sheet, and finally, a triangular wedge configuration. Each of these structures shows strongly anisotropic magneto-optical responses induced both by the external magnetic field and by the intrinsic anisotropy of the BP lattice. Starting from the magneto-optical conductivity of a single layer of BP, we derive the dispersion relation of the MPs in the considered geometries, using a combination of analytical, semi-analytical, and numerical methods. We fully characterize the MP dispersions and the properties of the corresponding field distributions, and we show that these structures sustain strongly anisotropic subwavelength modes that are highly tunable. Our results demonstrate that MPs in monolayer BP, with its inherent lattice anisotropy as well as magnetically induced anisotropy, hold potential for tunable anisotropic materials operating below the diffraction limit, thereby paving the way for tailored nanophotonic devices at the nanoscale.
AB - Two-dimensional materials supporting deep-subwavelength plasmonic modes can also exhibit strong magneto-optical responses. Here, we theoretically investigate magnetoplasmons (MPs) in monolayer black phosphorus (BP) structures under moderate static magnetic fields. We consider three different structures, namely, a continuous BP monolayer, an edge formed by a semi-infinite sheet, and finally, a triangular wedge configuration. Each of these structures shows strongly anisotropic magneto-optical responses induced both by the external magnetic field and by the intrinsic anisotropy of the BP lattice. Starting from the magneto-optical conductivity of a single layer of BP, we derive the dispersion relation of the MPs in the considered geometries, using a combination of analytical, semi-analytical, and numerical methods. We fully characterize the MP dispersions and the properties of the corresponding field distributions, and we show that these structures sustain strongly anisotropic subwavelength modes that are highly tunable. Our results demonstrate that MPs in monolayer BP, with its inherent lattice anisotropy as well as magnetically induced anisotropy, hold potential for tunable anisotropic materials operating below the diffraction limit, thereby paving the way for tailored nanophotonic devices at the nanoscale.
U2 - 10.1364/OL.44.000554
DO - 10.1364/OL.44.000554
M3 - Journal article
C2 - 30702677
SN - 0146-9592
VL - 44
SP - 554
EP - 557
JO - Optics Letters
JF - Optics Letters
IS - 3
ER -