Macrophage-derived osteopontin is fragmented by MMP-9 to hinder angiogenesis in the post-myocardial infarction left ventricle - DTU Orbit (14/08/2019)

Macrophage-derived osteopontin is fragmented by MMP-9 to hinder angiogenesis in the post-myocardial infarction left ventricle

Extracellular matrix (ECM) turnover is a key event during remodeling of the left ventricle (LV) following myocardial infarction (MI). Turnover includes ECM degradation of existing ECM to remove necrotic myocytes and synthesis to produce new ECM to form the infarct scar. Matrix metalloproteinases (MMPs) are elevated post-MI, and MMP-9 has a strong link to post-MI LV dysfunction. The ECM protein osteopontin (OPN) increases post-MI, and we previously identified by mass spectrometry a novel MMP-9 cleavage site of OPN between amino acids 151 and 152. In vitro, peptides both upstream and downstream of the cleavage site increased cardiac fibroblast migration without affecting proliferation.

General information
Publication status: Published
Organisations: Department of Biotechnology and Biomedicine, Disease Systems Immunology, University of Mississippi
Contributors: Nielsen, S. H., Flynn, E., Lindsey, M.
Pages: 331
Publication date: 2017
Peer-reviewed: Yes

Publication Information
Journal: European Heart Journal
Volume: 38
Issue number: Suppl. 1
Article number: P1566
ISSN (Print): 0195-668X
Ratings:
 - BFI (2017): BFI-level 2
 - Web of Science (2017): Impact factor 23.425
 - Web of Science (2017): Indexed yes
Original language: English
Electronic versions:
watermark_3_.pdf
DOIs:
10.1093/eurheartj/ehx502.P1566

Research output: Contribution to journal › Conference abstract in journal – Annual report year: 2017 › Research › peer-review