Machine learning techniques applied to system characterization and equalization

Linear signal processing algorithms are effective in combating linear fibre channel impairments. We demonstrate the ability of machine learning algorithms to combat nonlinear fibre channel impairments and perform parameter extraction from directly detected signals.

General information
Publication status: Published
Organisations: Department of Photonics Engineering, High-Speed Optical Communication, Centre of Excellence for Silicon Photonics for Optical Communications, IT Service, Technical University of Denmark, Helmut Schmidt Universität
Contributors: Zibar, D., Thrane, J., Wass, J., Jones, R. T., Piels, M., Schaeffer, C.
Number of pages: 3
Publication date: 2016

Host publication information
Title of host publication: Proceedings of 2016 Optical Fiber Communications Conference and Exhibition
Publisher: Optical Society of America (OSA)
ISBN (Print): 9781943580071
(2016 Optical Fiber Communications Conference and Exhibition (ofc)).
Keywords: signal processing, equalisers, learning (artificial intelligence), optical fibre communication, parameter extraction, system characterization, system equalization, linear signal processing algorithms, machine learning algorithms, nonlinear fibre channel, optical noise, signal to noise ratio, modulation, phase noise, estimation, nonlinear optics, optical polarization, optical communication, communication channel equalisation and identification, signal processing and detection, knowledge engineering techniques, digital signal processing
DOIs: 10.1364/OFC.2016.Tu3K.1

Bibliographical note
From the session: DSP for Coherent Systems (Tu3K)
Source: Findit
Source ID: 2342530742
Research output: Chapter in Book/Report/Conference proceeding › Article in proceedings – Annual report year: 2016 › Research › peer-review