Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction

Zachary W. Ulissi, Michael T. Tang, Jianping Xiao, Xinyan Liu, Daniel A. Torelli, Mohammadreza Karamad, Kyle Cummins, Christopher Hahn, Nathan S. Lewis, Thomas F. Jaramillo, Karen Chan, Jens K. Nørskov*

*Corresponding author for this work

Research output: Contribution to journalJournal articleResearchpeer-review

Fingerprint

Dive into the research topics of 'Machine-learning methods enable exhaustive searches for active Bimetallic facets and reveal active site motifs for CO2 reduction'. Together they form a unique fingerprint.

Engineering & Materials Science

Chemical Compounds