Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor

Four new copolymers of 1,4-dialkoxybenzene, thiophene, bithiophene and benzothiadiazole have been prepared and investigated for optical properties and in photovoltaic devices. The structures were chosen to show the effect of successively introducing an acceptor moiety, longer alkoxy side chains and finally, substituting thiophene for bithiophene. The absorption spectra and IPCE showed that these are low band gap polymers that can harvest light in the visible spectrum (400 to 700 nm) and that photoelectrons are generated in the whole range. The photovoltaic devices produced short circuit current densities (J_{sc}) of 2.6 to 4.6 mA/cm2 under AM1.5 G illumination. The open circuit voltage (V_{oc}) was 0.56 to 0.64 V and the efficiencies (η) of 0.8\% to 2.2\% depending on the structure.

General information
Publication status: Published
Organisations: Solar Energy Programme, Risø National Laboratory for Sustainable Energy
Contributors: Carlé, J. E., Andreasen, J. W., Jørgensen, M., Krebs, F. C.
Pages: 774-780
Publication date: 2010
Peer-reviewed: Yes

Publication information
Volume: 94
Issue number: 5
ISSN (Print): 0927-0248
Ratings:
BFI (2010): BFI-level 1
Scopus rating (2010): SJR 2.494 SNIP 2.085
Web of Science (2010): Impact factor 4.746
Web of Science (2010): Indexed yes
Original language: English
Keywords: Polymer solar cells, Solar energy
DOIs: 10.1016/j.solmat.2009.12.023

Bibliographical note
This work was supported by the Danish Strategic Research Council (DSF 2104-05-0052 and 2104-07-0022) and by EUDP (j. nr. 64009-0050).
Source: orbit
Source ID: 257165
Research output: Contribution to journal › Journal article – Annual report year: 2010 › Research › peer-review