Long-term effects of cropping system on N₂O emission potential

The potential for N₂O emissions outside the main growing season may be influenced by long-term effects of cropping system. This was investigated by collecting intact soil cores (100 cm³, 0-4 cm depth) under winter wheat in three organic cropping systems and a conventional reference within a long-term crop rotation experiment. Average annual inputs of C in crop residues and manure ranged from 1.7 to 3.3 Mg ha⁻¹. A simulated freeze-thaw cycle resulted in a flush of CO₂ during the first 48 h, which could be mainly from microbial sources. Other samples were adjusted to approximately −10, −30 or −100 hPa and amended with excess ¹⁵NO₃⁻ prior to freezing and thawing. Denitrification was the main source of N₂O during a 72-h incubation at 22 °C, as judged from N₂O and total ¹⁵N evolution. Although the input of C in the conventionally managed cropping system was significantly less than in the organic cropping systems, it showed higher N₂O evolution at all three matric potentials. Estimates of relative gas diffusivity (DP/D₀) in soil from the four cropping systems indicated that C input affected soil aeration. Soil from the two cropping systems with highest C input showed N₂O evolution at DP/D₀ in excess of 0.02, which is normally considered a threshold for development of anaerobic sites in the soil, presumably because the oxygen demand was also high. The study shows that cropping system affects both soil gas diffusivity and C availability, and that both characteristics significantly influence the N₂O emission potential.

General information
Publication status: Published
Organisations: National Veterinary Institute, Department of Chemical and Biochemical Engineering, Ecosystems Programme, Aarhus University
Contributors: Petersen, S. O., Ambus, P., Elsgaard, L., Schjønning, P., Olesen, J. E.
Pages: 706-712
Publication date: 2013
Peer-reviewed: Yes

Publication information
Journal: Soil Biology & Biochemistry
Volume: 57
ISSN (Print): 0038-0717
Ratings:
BFI (2013): BFI-level 2
Scopus rating (2013): CiteScore 4.96 SJR 2.279 SNIP 1.965
Web of Science (2013): Impact factor 4.41
ISI indexed (2013): ISI indexed yes
Web of Science (2013): Indexed yes
Original language: English
Keywords: Freeze-thaw cycle, Soil organic matter, ¹⁵N, Gas diffusivity, Denitrification
DOIs:
10.1016/j.soilbio.2012.08.032
Source: dtu
Source ID: n:oai:DTIC-ART:orgprints/376879516::25137
Research output: Contribution to journal › Journal article – Annual report year: 2013 › Research › peer-review