Long-wavelength closures for collisional and neutral interaction terms in gyro-fluid models

M. Wiesenberger*, M. Held

*Corresponding author for this work

Research output: Contribution to journalConference articleResearchpeer-review

47 Downloads (Pure)

Abstract

A collisional gyro-fluid model is presented. The goal of the model is edge and scrape-off layer turbulence. The emphasize in the model derivation heavily lies on ”implementability” with today’s numerical methods. This translates to an avoidance of infinite sums, strongly coupled equations in time and intricate elliptic operator functions. The resulting model contains the four moments density, parallel momentum, perpendicular pressure and parallel energy and is closed by a polarisation equation and parallel Ampere law. The central ingredient is a collisional long-wavelength closure that relies on a drift-fluid gyro-fluid correspondence principle. In this way the extensive literature on fluid collisions can be incorporated into the model including sources, plasma-neutral interactions and scattering collisions. Even though this disregards the characteristic finite Larmor radius terms in the collisional terms the resulting model is at least as accurate as the corresponding drift-fluid model in these terms. Furthermore, the model does enjoy the benefits of an underlying variational principle in an energy-momentum theorem and an inherent symmetry in moment equations with regards to multiple ion species. Consistent particle drifts as well as finite Larmor radius corrections and high amplitude effects in the advection and polarization terms are further characteristics of the model. Extensions and improvements like short-wavelength expressions, a trans-collisional closure scheme for the low-collisionality regime or zeroth order potential must be added at a later stage.
Original languageEnglish
Article number012015
Book seriesJournal of Physics: Conference Series
Volume2397
Number of pages12
ISSN1742-6588
DOIs
Publication statusPublished - 2022
EventTheory of Fusion Plasmas Joint Varenna - Lausanne Workshop 2022 - Varenna, Italy
Duration: 12 Sept 202216 Sept 2022

Workshop

WorkshopTheory of Fusion Plasmas Joint Varenna - Lausanne Workshop 2022
Country/TerritoryItaly
CityVarenna
Period12/09/202216/09/2022

Fingerprint

Dive into the research topics of 'Long-wavelength closures for collisional and neutral interaction terms in gyro-fluid models'. Together they form a unique fingerprint.

Cite this