Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

Gang Luo, Dimitar Borisov Karakashev, Li Xie, Qi Zhou, Irini Angelidaki

Research output: Contribution to journalJournal articleResearchpeer-review

1 Downloads (Pure)

Abstract

Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition at initial pH 5.5. Microbial community analysis showed that pretreatment did not affect the dominant bacteria. The dominant bacteria were Clostridium butyricum related organisms under mesophilic condition (initial pH 7 and 5.5), Thermoanaerobacterium sp. related organisms under thermophilic condition (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were dependent on fermentation temperature and pH.
Original languageEnglish
JournalBiotechnology and Bioengineering (Print)
Volume108
Issue number8
Pages (from-to)1816-1827
ISSN0006-3592
DOIs
Publication statusPublished - 2011

Keywords

  • Hydrogen production
  • Inoculum pretreatment
  • homoacetogenesis
  • Methanogenesis

Cite this

@article{2b8f4bbaa5ae474b8b7ee08b53956155,
title = "Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production",
abstract = "Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition at initial pH 5.5. Microbial community analysis showed that pretreatment did not affect the dominant bacteria. The dominant bacteria were Clostridium butyricum related organisms under mesophilic condition (initial pH 7 and 5.5), Thermoanaerobacterium sp. related organisms under thermophilic condition (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were dependent on fermentation temperature and pH.",
keywords = "Hydrogen production, Inoculum pretreatment, homoacetogenesis, Methanogenesis",
author = "Gang Luo and Karakashev, {Dimitar Borisov} and Li Xie and Qi Zhou and Irini Angelidaki",
year = "2011",
doi = "10.1002/bit.23122",
language = "English",
volume = "108",
pages = "1816--1827",
journal = "Biotechnology and Bioengineering (Print)",
issn = "0006-3592",
publisher = "JohnWiley & Sons, Inc.",
number = "8",

}

Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. / Luo, Gang; Karakashev, Dimitar Borisov; Xie, Li; Zhou, Qi; Angelidaki, Irini.

In: Biotechnology and Bioengineering (Print), Vol. 108, No. 8, 2011, p. 1816-1827.

Research output: Contribution to journalJournal articleResearchpeer-review

TY - JOUR

T1 - Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production

AU - Luo, Gang

AU - Karakashev, Dimitar Borisov

AU - Xie, Li

AU - Zhou, Qi

AU - Angelidaki, Irini

PY - 2011

Y1 - 2011

N2 - Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition at initial pH 5.5. Microbial community analysis showed that pretreatment did not affect the dominant bacteria. The dominant bacteria were Clostridium butyricum related organisms under mesophilic condition (initial pH 7 and 5.5), Thermoanaerobacterium sp. related organisms under thermophilic condition (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were dependent on fermentation temperature and pH.

AB - Long-term effects of inoculum pretreatments(heat, acid, loading-shock) on hydrogen production from glucose under different temperatures (378C, 558C) and initial pH (7 and 5.5) were studied by repeated batch cultivations. Results obtained showed that it was necessary to investigate the long-term effect of inoculum pretreatment on hydrogen production since pretreatments may just temporarily inhibit the hydrogen consuming processes. After long-term cultivation, pretreated inocula did not enhance hydrogen production compared to untreated inocula under mesophilic conditions (initial pH 7 and pH 5.5) and thermophilic conditions (initial pH 7). However, pretreatment could inhibit lactate production and lead to higher hydrogen yield under thermophilic conditions at initial pH 5.5. The results further demonstrated that inoculum pretreatment could not permanently inhibit either methanogenesis or homoacetogenesis, and methanogenesis and homoacetogenesis could only be inhibited by proper control of fermentation pH and temperature. Methanogenic activity could be inhibited at pH lower than 6, both under mesophilic and thermophilic conditions, while homoacetogenic activity could only be inhibited under thermophilic condition at initial pH 5.5. Microbial community analysis showed that pretreatment did not affect the dominant bacteria. The dominant bacteria were Clostridium butyricum related organisms under mesophilic condition (initial pH 7 and 5.5), Thermoanaerobacterium sp. related organisms under thermophilic condition (initial pH 7), and Thermoanaerobacterium thermosaccharolyticum related organisms under thermophilic condition (initial pH 5.5). Results from this study clearly indicated that the long-term effects of inoculum pretreatments on hydrogen production, methanogenesis, homoacetogenesis and dominant bacteria were dependent on fermentation temperature and pH.

KW - Hydrogen production

KW - Inoculum pretreatment

KW - homoacetogenesis

KW - Methanogenesis

U2 - 10.1002/bit.23122

DO - 10.1002/bit.23122

M3 - Journal article

C2 - 21381001

VL - 108

SP - 1816

EP - 1827

JO - Biotechnology and Bioengineering (Print)

JF - Biotechnology and Bioengineering (Print)

SN - 0006-3592

IS - 8

ER -